Butler Memorial Hospital Butler, PA

Building for the Future: A New Era Begins

James D. Rotunno

Senior Thesis Final Report

Structural Option

Advisor: Dr. Ali Memari

April 11, 2010

Project Team:

Owner: Butler Healthcare Providers

Owners Representative: Ritter Construction Management Inc.

Construction Manager: Turner Construction

Architect: Design Group

Design Architect: Hammel, Green, Abrahamson

The foundation system is made up of drilled piers at varying depths and diameters from 30"-78", reinforced concrete grade beams and reinforced concrete foundation walls

Mechanical System

HVAC requirements are being provided through the use of AHU's at the roof top levels. Variable air volume (VAV) boxes closer to the discharge destination readjusts the air quality again before delivering it to individual rooms. Radient ceiling panels are utilized on perimeter walls, and bare fin tube radient heat is used in the overhanging floor areas.

Building Statistics

Size: 206,000 Square Feet

Height: 134'-3"

Levels: 6 above grade & 2 below grade

Construction Dates: Sept. 2008 - Summer 2010

Function: Primarilly Surgery & Recovery

Cost: 93 Million

Structural System

Structural steel framing with wide flange members

for beams and columns and HSS braces
Floor systems are comprised of wide flange
beams supporting 3" composite metal decking
and 3-1/2" composite concrete floor slabs.
The lateral force resisting system is composed
Cevron type braces made from HSS sections

Electrical & Lighting

The electrical system is a 480/277V, 3 phase, 4 wire system for equipment and

florescent lighting and steps down toa 208/120 system for general use, recepticles and incandescent lighting.

Table of Contents

Acknowledgements	5
Executive Summary:	6
Introduction:	7
Structural System:	9
Existing System: Rigid Diaphragm	9
Existing System: Foundation	12
Existing System: Lateral Resistance	13
Design Standards & Codes:	15
Design Load Summary:	16
Wind Loads	16
Seismic Design	20
Controlling lateral load combination:	21
Lateral System Analysis:	22
Force Distribution:	23
Analysis Method:	24
Deflection criteria as per 2006 International Building Code:	27
SAP 2000 2d Frame Analysis to compare with hand calculations:	28
Overturning:	34
Member Checks:	35
Lateral System Conclusions:	35
Redesigned Gravity System	37
Disadvantages:	37
Advantages:	38
Analysis Process:	39
Calculated Values:	40
Jim Rotunno - Final Report	Page 3

System Component Viability:	41
Connections:	44
Proposed system MAE considerations:	44
Designs:	46
Connection Conclusions:	48
Breadth Options:	49
Acoustical Considerations:	49
Acoustical Conclusions:	53
Architectural Redesign of Partial Ground & First Levels:	54
Proposed System Vibrations Due to Walking:	59
Construction Cost Comparison:	60
Conclusions:	61
Final System Summary & Conclusions:	62
Appendix: A	64
Appendix B: Wind	68
Appendix C: Snow	75
Appendix D: Seismic calculations	76
Appendix E: Frame Stiffness and Load Distribution Calculations	81
Appendix F: Member Spot Checks	102
Appendix G: Girder & Slab Sizing	107
Appendix H: Connection Load Diagrams	126
Appendix J: Connection Designs and Calculations	
Appendix K: Acoustical Calculations	149
Appendix L: Vibration due to Walking	159

Acknowledgements

Butler Health System: Owner

For making this project available to study and analyze

Turner Construction: Construction Manager

For all of their help, support and site visits on this project

Kurt Johnson – Project Manager

William Beck - Project Superintendent

Megan Wortman - Field Engineer

HGA: Design Architect, Structural, Mechanical, Electrical Engineer

For the consulting help with technical questions Johanna H. Harris P.E. – Associate Vice President

Jonathan Wacker

Girder-Slab: Daniel G. Fisher Sr. – Managing Partner

Peter Naccarato P.E. - Engineer

Pennsylvania State University: Department of Architectural Engineering

Dr. Ali Memari, Ph.D., P.E., - Thesis Advisor

Louis F. Geschwindner Jr., Ph.D., P.E.

Professor Emeritus

AISC Vice President, Special Projects

M. Kevin Parfitt, P.E. - Thesis Faculty Director

Faculty & Staff

Family and Friends: A special thanks to my wife who has never complained about my time away from home, even when the snow needs cleared or the furnace breaks down.

Executive Summary:

This is the fourth report in a yearlong senior thesis project for The Pennsylvania State University, Department of Architectural Engineering. The subject of this thesis project is The Butler Health System – New Inpatient Tower Addition and Remodel involving a structural depth topic, two breadth area studies, and a member connection design. The primary structural topic is whether or not the proposed redesign of the gravity system; a girder-slab system, for this type of structure is not only theoretically possible but a practical solution as well based on depth and breadth studies.

Existing structural design features are initially discussed including foundation and gravity with a primary focus on the lateral force resisting system. An analysis of the design codes and standards are included as well as a determination as wind being the controlling lateral force. The lateral load analysis contains force, distributions, methods, deflection criteria, over-turning moment, and member checks. Conclusions drawn at the end of the lateral analysis reveal that the structures lateral system is designed for strength rather than drift criteria.

The gravity force resisting system was redesigned from a composite deck and composite beam system with a total depth of six and one half inch lightweight concrete to a girder-slab floor system which uses precast hollow-core planks with partially grouted cores, a two inch structural concrete topping and a system of modified castellated W-shape steel members. The slabs rest on the bottom flange of the modified members or HSS shapes used as "shims" and are approximately ½" above the top flange adding approximately one foot of unobstructed ceiling cavity without increasing floor-to-floor heights.

Connections were designed to complete the load path from the gravitational and lateral loads to the columns. Several typical connection designs were completed to ensure functionality and constructability of the systems. Breadth topics of construction management and an acoustical study of conflicting use spaces; which includes an architectural redesign were completed.

Conclusions at the end of each section and the report found that on this particular structure the proposed solution is possible but may not be a practical solution due to costs, delivery method and location; however, the same structure located elsewhere requiring lower floor-to-floor heights may benefit from the use of this type of system.

Introduction:

Butler Health System's new addition located in Butler, PA consists of two sub grade levels which have limited facade and entrances at ground level on the plan west end of the structure. There are five other at or above grade levels that comprise the bulk of the hospitals general facilities. One more final level, the penthouse level, encompasses the mechanical equipment on the roof top.

The structure is approximately 206,000 square feet with floor to floor heights of 14'-8"each. It stands at just a little over 100' tall above the highest grade level and is situated on the middle-top of a hillside. With the exception of the slightly arcing plan north facade the floor plan is quite regular with typical bay sizes being 28' x30'.

Drilled caissons were used for the foundation system which range from 30"–78" in diameter and reach depths of up to 79'. Grade beams between the caissons on the below grade level areas transfer wall loads to the foundation system and provide interior perimeter walls for the lower levels as well as provide support for the slab on grade at the second level. The superstructure is composed of steel W-shape members for the gravity load transfer components and steel HSS members in primarily an inverted chevron bracing pattern which provides the lateral force resisting system for the structure. Almost all member connections are shear connections with the exception of a few moment connections at cantilevering beams. These moment connections however do not contribute to the lateral force resisting system.

The main focus and depth study for this report is on the redesign of the gravity load resisting system. The redesigned system is a fairly new concept in structural design and has only been used since early 2000. This type of system is generally referred to as girder-slab construction and has been limited primarily to housing units, dormitories and hotels. Generally current practices, standards, and research limit this type of system to 15' spans and relatively low live loading (60psf or less). As part of this gravity system five W-shape members were selected and modified into a built up castellated sections with a large compression bar for the top flange.

Also included is a the lateral force resisting system, how loads are applied to the system, the load combinations used to determine the system, and how the system reacts to and distributes these lateral forces. A 2D frame computer analysis is performed as well as hand calculations to compare to the computer output results and to verify minimal spot checks. The braced frames at or above level two; the first level that is completely exposed above grade, will primarily be the focus for both the computer and hand calculation analysis and spot checks.

Included as part of the depth study is how the structure will be connected at different member intersections. Several of these connections are shown as typical connections of different element types to illustrate the load path and how the load is transmitted through the connection. All relevant limit states are considered and calculated to determine the controlling state at each connection and all connections are designed as shear connections.

As part of the two breadth studies done for this project the first is a construction management analysis of the gravity systems effectiveness from a time and cost perspective. This is one of the deciding factors as to the systems viability for a structure of this size and loading requirements.

The second breadth option studied the difference in acoustical performance of the redesigned floor system over the existing one particularly in sound transmission between the first and second levels where there are chillers, boilers and compressors on the first level, directly below conference and board rooms on the second level. This was also looked at using an architectural redesign as a solution to any acoustical issues that were determined.

The proposed system is evaluated in the final conclusions section based on all of the above information, research and designs for its technical and practical viability for this type of structure use as well as other building types.

Structural System:

Existing System: Rigid Diaphragm

Existing conditions for the originally designed floor system consists of composite steel decking with lightweight concrete (f'c = 3500psi @28 days). It has 20 gauge steel decking with 3" deep flutes, $\frac{3}{4}$ " diameter 5" long shear studs and an additional 3.5" of concrete. The girders supporting the beams and floor system are typically W21x50, 28' long with 38 shear studs. There are typically four beams per bay including the ones at each column line. The beams are typically W18x40 evenly spaced at ten foot intervals and are 30 feet long with 28 shear studs each.

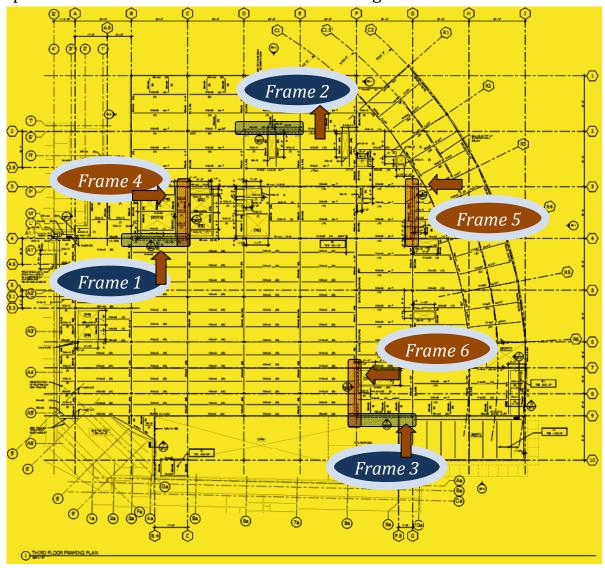


Figure 4.1: Third floor framing plan with braced frame locations shown

The composite deck and composite beam floor system is what comprises the rigid diaphragm to transfer the lateral loads into the lateral load resisting system as shown in the partial system of level 3 in Figure 4.2 below. The highlighted areas indicate the braced frame locations.

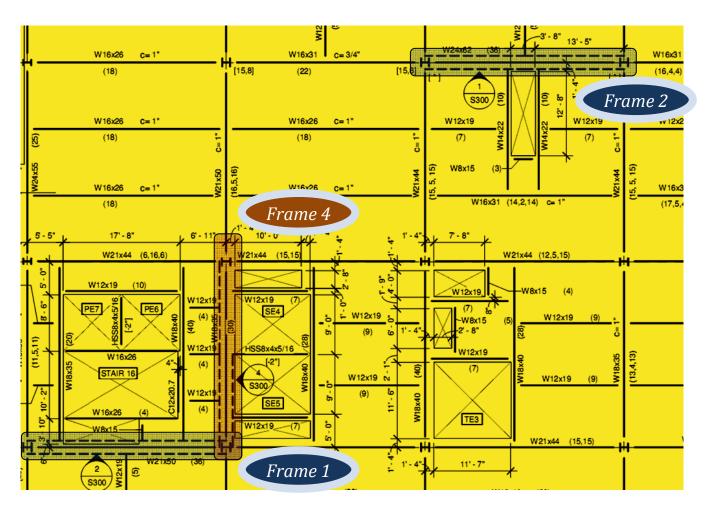


Figure 4.2: Enlarged view from Figure 4.1

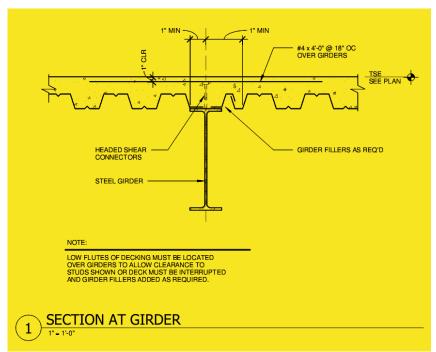


Figure 4.3: Existing slab & beam/girder conditions

	SLAB/DECK SCHEDULE									
MARK	TOTAL	TYPE		DECK		CONC	RETE	STUD	REINFOR	CING
WARK	THICKNESS	TYPE	DEPTH	GAGE	FINISH	THICKN	TYPE	LENGTH	REINF	DETAIL
S1	6 1/2"	COMP DECK	3"	20	GALV	3 1/2"	LW	5"	WWF 6x6 W2.1xW2.1	
S2	6 1/2"	COMP DECK	3"	18	GALV	3 1/2"	LW	5"	#5@ 12"OC T & B #4@ 12"OC TRANSVERSE	
D1	3"	ROOF DECK	3"	20	GALV					

NOTES:

- 1. ALL COMPOSITE SHEAR CONNECTORS (STUDS) ARE 3/4"Ø UNO
- 2 NW=NORMAL WEIGHT CONCRETE; LW=LIGHTWEIGHT CONCRETE.
- 3. STUD LENGTHS ARE LENGTHS AFTER WELDING.
- 4. SEE DETAILS 1,2,3/S701 FOR SLAB REINFORCING.
- 5. SEE 14-16/S700 FOR DECK WELDING.
- 6. SEE 17/S700 FOR COMPOSITE DECK STUD PLACEMENT.

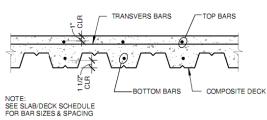


Figure 4.5: Existing slab/deck schedule

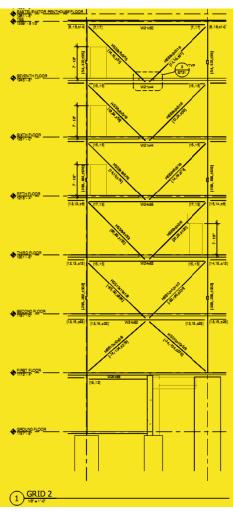


Figure 4.4: Typical lateral bracing elevation

Existing System: Foundation

Drilled caissons were used for the foundation system which range from 30"–78" in diameter and reach depths of up to 79' and are socketed 3' into competent rock. Grade beams between the caissons on the below grade level areas transfer wall loads to the foundation system and provide interior perimeter walls for the lower levels as well as provide support for the slab on grade at the second level. The piers have been designed for both end bearing and skin friction with an allowable end bearing pressure of 20 TSF and an allowable lateral earth pressure that varies with the depth of the soil strata from a minimum of 3TSF through fill and decomposed rock to a maximum of 12 TSF in the limestone/siltstone layer. They are comprised of 4000 psi @ 28 days strength concrete, ASTM A615 Grade 60 deformed bars with 12" minimum Class B tension lap splices where required and conform to ACI 318 design code.

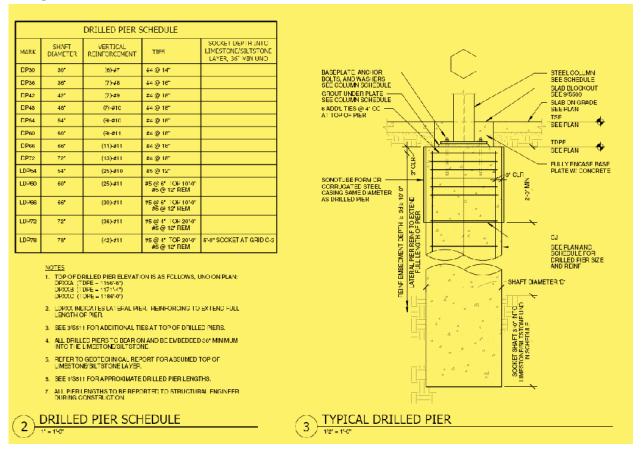
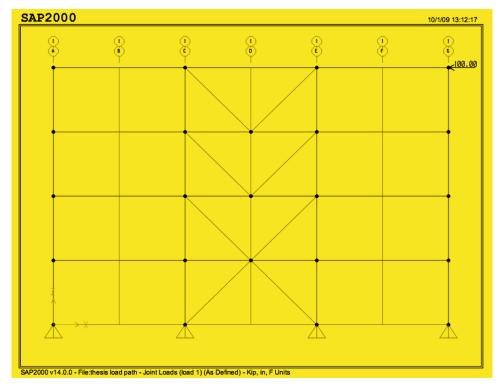
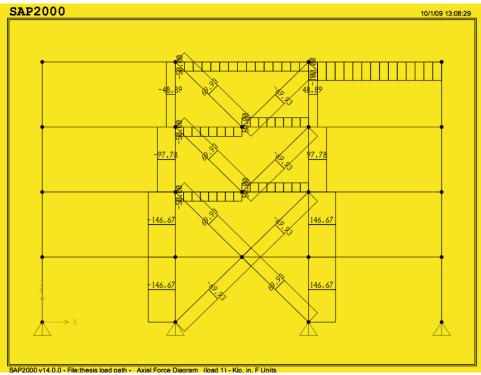


Figure 4.6: Drilled pier schedule


Existing System: Lateral Resistance


Lateral loads caused by wind pressures / earthquake loading are calculated using ASCE 7-05 and are resisted by the structure through the use of several different diagonal inverted Chevron, Chevron, and/or X bracing configurations (see Figure 4.4) located at every floor level in both directions.

The differing wind pressures on the exterior facade are converted to forces per square foot of wall area and are distributed to each floor level by tributary areas through the glazing and brick facade system. From there the floors are assumed to act as rigid diaphragms and distribute each floor load to the braced frames at each level according to their relative stiffness's. This assumption can be made by viewing the composite floor system as being approximately 22-30" thick including the reinforced composite slab and composite beam/girder construction. Where there are openings in the floor, extra beams are located along side/through them to help keep rigidity around/through them. Braced frames #1 & 4 are located in the elevator and stairwell core area to collect and maintain rigidity in that area where there are larger openings.

These loads are then transferred axially through the HSS members and into their corresponding beams and columns. At the beam/girder to HSS connection there is a concentric compressive force from one brace and a concentric tension force from the other brace which cancel each other's vertical components being transferred into the beam/girder; therefore, the force transferred into the member is axial.

See Figures 4.7 & 4.8 on the following page for how the load is distributed from the initial lateral force to the individual bracing and framing elements. Note how the single lateral force at the top of the structure creates the same compressive/tensile force from top to bottom in all bracing members, but the load being transferred axially into the columns increases linearly by the force in the top column until the frame reaches its foundation support. From there the load is transferred to the ground.

Figures 4.7 & 4.8: Simplified example of lateral force distribution to braced frame and lateral load columns

Design Standards & Codes:

2006 IBC

2000 NFPA 101

2006 Guidelines for Design & Construction of Health Care Facilities

1998 Pennsylvania Department of Health Rules and Regulations for Hospitals

ASCE 7-05: for wind, seismic, snow and gravity loads

ACI 318-08: for concrete construction

AISC Thirteenth Edition: for steel members

ASHRAE Handbook: HVAC Applications & Fundamentals

PCI 2003 for vibration

ATC 1999 for vibration (ADAPT technical note TN209 3/21/09 for reference)

Possible load case combinations: From ASCE 7-05 § 1605.2.1

(Only combinations that include Wind, Earthquake and/or Snow)

*Note: The snow load would be added to the total weight of the building for the earthquake loading calculations; therefore, snow by itself would not be considered.

D=Dead, L=Live, W=Wind, E=Earthquake, S=Snow, F=Fluid, T=Temperature, H=Lateral Earth Pressure, L_r=Live roof, R=Rain

1) $1.2D + 1.6(L_r \text{ or S or R}) + (L \text{ or } 0.8W)$

 $1.2D + 1.6L_r + 0.8W$ for gravity and lateral

0.8W for just lateral

2) $1.2D + 1.6W + L + 0.5(L_r \text{ or S or R})$

 $1.2D + 1.6W + L + 0.5L_r$) for gravity and lateral

1.6W for just lateral

3) 1.2D + 1.0E + L + S

1.2D + 1.0E + L + S for gravity and lateral

1.0E for just lateral

4) 0.9D + 1.6W + 1.6H

0.9D + 1.6W for gravity and lateral

1.6W for just lateral

5) 0.9D + 1.0E + 1.6H

0.9D + 1.0E for gravity and lateral

1.0E for just lateral

1.6W or 1.0E will control for just lateral loading on the structure, whichever proves to be higher.

Design Load Summary:

		Gravity Loa	ıds		
Description/location	DL/ LL	ASCE 7-05/ IBC 1607.9 values	HGA's values	Reduction available/used	Design value
Concrete floors	DL	90-115pcf	115pcf	NO/NO	115pcf
MEP/partitions/finishes	SDL	20-25psf	44psf	NO/NO	35psf
1st floor mechanical	LL		125psf	YES/NO	125psf
2 nd floor/ lobby	LL	100psf	100psf	YES/NO	100psf
Hospital floors	LL	40-80psf	80psf	YES/YES	80psf
Stairs & exits	LL	100psf	100psf	NO/NO	100psf
5 th floor roof	LL		115psf	NO/NO	115psf
Mech. Penthouse floor	LL		125psf	NO/NO	125psf
Elevator Machine room floor	LL		125psf	YES/NO	
Roof top equipment areas	LL		125psf (or actual equipment wt.)	NO/NO	125psf
Balconies	LL	100psf	100psf	YES/YES	psf
*Snow	LL	24-30psf	24-30psf	NO/NO	24-30psf

See Appendix C for calculations

Table 4.1: For total dead weight of building for seismic loading

Wind Loads are determined using ASCE 7-05 Section 6.5, which is Main Wind Force Resisting System (MWFRS) method 2- analytical procedure. See ASCE 7-05 Section 6.5 Table 1B for design factor values needed in calculations. All values, factors and equations are derived from section 6. To Determine the Gust Effect Factor (G) the structure had to be determined as a rigid structure. To make this assumption 100/h has to be ≤ 1. Making the assumption that h was just under 100 feet based on the fact that the first two levels are minimal compared to the rest of the structure and there is only one wall face exposed on each; therefore the bulk of the structure completely exposed above ground would meet the requirement. See Appendix A of structure under construction for clarity; the lowest level faces west. The wind and seismic calculations from the previous technical reports were revisited and final values were adjusted based on more accurate factor values. See Appendix B for wind calculations.

See Appendix D for seismic calculations.

WIND LOAD

BASIC WIND SPEED (3 SECOND GUST) 90 MPH

WIND IMPORTANCE FACTOR 1.15

WIND EXPOSURE CATEGORY C

MEAN ROOF HEIGHT 122 FT

INTERNAL PRESSURE COEFFICIENT 20.18

TOPOGRAPHIC FACTOR, Kzt. 1.62 MAX AT BASE

1.09 MIN AT MEAN ROOF HEIGHT

Figure 4.9: Wind load data from construction documents

Wind Load Data for Calculations

East-West direction			ASCE section
Basic wind speed	V	90mph	6.5.4 (Figure 6-1)
Mean roof height	h	122ft	
Wind directionality factor	K _d	0.85	6.5.4 (Table 6-4)
Importance Factor (Occupancy category IV)	I	1.15	6.5.5 (Table 6-1)
Exposure category		С	6.5.6.3
Velocity pressure coefficient	K_z	varies	6.5.6 (Table 6-3)
Topographic factor	K _{zt}	varies	6.5.7.1 (Figure 6-4)
Gust effect factor	G	0.856	6.5.8
Enclosure Classification		Enclosed	6.5.9
Internal pressure coefficient	GC_{pi}	±0.18	6.5.11.1 (Table 6-3)
External pressure coefficients windward side	C_{p}	0.8	6.5.11.2 (Figure 6-6)
External pressure coefficients leeward side	$C_{\rm p}$	-0.5	(Figure 6-6)
Velocity pressure @ height Z	q_z	varies	6.5.10
Velocity pressure @ mean roof height	q_h	30.41lb/ft ²	6.5.10
Design wind load	F	determined	

Table 4.2: Wind load data table for East - West loading

East - West Base & Story Shears with Overturning Moment

Level	Height	Pressure	Force	Shear (V)	Moment (M)
	(ft)	(lbs/ft ²)	(F)kips	kips	Kips*ft
		Windward + leeward			-
0- Ground	0	24.59	21.64	545.75	4000.3
1	14'-8"	24.59	52.10	524.11	3841.7
2	29'-4"	26.48	69.29	472.01	3459.8
3	44'-0"	27.30	81.26	402.72	2951.9
5	58'-8"	27.57	84.91	321.46	2356.3
6	73'-4"	27.59	84.64	236.55	1733.9
7	88'-0"	27.38	83.51	151.91	1113.5
8-Roof	102'-8"	26.87	49.5	68.4	501.4
9- P.H. 1	122'-0"	26.30	13.52	18.9	182.7
10- P.H. 2	135'- 0"	25.87	5.38	5.38	34.97
		Ba	se Shear =	545.75	
		Overturning	Moment =		20176.52

Table 4.3: See Appendix B for calculations and drawings

Wind Load Data for Calculations

North-South direction			ASCE section
Basic wind speed	V	90mph	6.5.4 (Figure 6-1)
Mean roof height	h	122ft	
Wind directionality factor	K _d	0.85	6.5.4 (Table 6-4)
Importance Factor	I	1.15	6.5.5 (Table 6-1)
Exposure category		С	6.5.6.3
Velocity pressure coefficient	K_z	varies	6.5.6 (Table 6-3)
Topographic factor	Kzt	varies	6.5.7 (Figure 6-4)
Gust effect factor	G	0.857	6.5.8
Enclosure Classification		Enclosed	6.5.9
Internal pressure coefficient	GC_{pi}	±0.18	6.5.11.1 (Table 6-3)
External pressure coefficients windward side	C_p	0.8	6.5.11.2 (Figure 6-6)
External pressure coefficients leeward side	C_p	-0.5	(Figure 6-6)
Velocity pressure @ height Z	q_z	varies	6.5.10
Velocity pressure @ mean roof height	q_h	30.41/ft ²	6.5.10
Design wind load	F	determined	

Table 4.4: Wind load data table for North – South loading

North - South Base & Story Shears with Overturning Moment

Level	Height	Pressure	Force	Shear (V)	Moment (M)
	(ft)	(lbs/ft²)	(F)kips	kips	Kips*ft
		Windward + leeward			
0- Ground	0	0	0	557.55	4086.84
1	14'-8"	24.60	15.69	557.55	4086.84
2	29'-4"	26.61	72.10	541.86	3971.83
3	44'-0"	27.33	98.45	469.76	3443.34
5	58'-8"	27.61	100.27	371.31	2721.70
6	73'-4"	27.63	93.73	271.04	1986.72
7	88'-0"	27.43	86.37	177.31	1299.68
8-Roof	102'-8"	26.91	62.53	90.94	666.59
9- P.H. 1	122'-0"	26.34	23.96	28.41	274.58
10- P.H. 2	135'- 0"	25.90	4.45	4.45	28.93
		Ba	se Shear =	557.55	
		Overturning	Moment =		22567.05

Table 4.5: See Appendix B for calculations and drawings

Snow loads are determined using ASCE 7-05 Chapter 7. The design values in sections 7.1-7.3 all agree with HGA's values (see Appendix C notes on snow loads.) A minimum roof design load of 30psf will be used for calculations.

SNOW LOAD	
GROUND SNOW LOAD, Pg	25 PSF
FLAT ROOF SNOW LOAD, Pf	24 PSF
MINIMUM ROOF DESIGN LOAD	30 PSF
SNOW IMPORTANCE FACTOR	1.2
SNOW EXPOSURE FACTOR, Ce	1.0
THERMAL FACTOR, Ct (BUILDING)	1.0
THERMAL FACTOR, Ct (CANOPIES)	1.2

Figure 4.10: Construction document values

As per ASCE 7-05 § 12.7.2; effective seismic weight:

4) where the flat roof snow load exceeds 30psf use 20%; otherwise it is not required. (P_f designed and calculated = 24psf (Therefore not applicable)

Seismic Design:

Criteria are based off of ASCE 7-05 Chapters 11, 12, 14 & 22 for seismic design. Initially in Technical Report #3 (lateral system analysis) a C_s value of 0.046 was calculated to multiply with the total building weight (W_T) to determine the base shear and then distribute this base shear to the individual levels. The effective seismic weight (W_T) is determined using information from ASCE 7-05, §12.7.2., and totaled using an excel spreadsheet found in Appendix D.

SEISMIC DESIGN DATA
SPECTRAL RESPONSE ACCELERATION, Ss 0.0127
SPECTRAL RESPONSE ACCELERATION, S1 0.0055
SITE CLASSC
SEISMIC IMPORTANCE FACTOR
SEISMIC DESIGN CATEGORY (SDC) A

Figure 4.11: Construction document data for seismic

Technical Report #3 Calculations $V = base shear = Cs*W_T$ Cs = 0.0456 $W_T = 18675.1 \text{ kips}$ V = 851.58 kips

Rechecking and revaluating the seismic data and calculations from the previous report it was determined from Chapter 11, § 4-7 that the structure is located in a an area where the Seismic Design Category (SDC) is A. ASCE 7-05 §11.7.2 for design category A lets the designer use a more simplified and less stringent lateral design force for the structure.

11.7.2 Lateral Forces. Each structure shall be analyzed for the

effects of static lateral forces applied independently in each of two orthogonal directions. In each direction, the static lateral forces at all levels shall be applied simultaneously. For purposes of analysis, the force at each level shall be determined using Eq. 11.7-1 as follows: $F_x = 0.01w_x \tag{11.7-1}$

where F_x = the design lateral force applied at story x, and w_x = the portion of the total dead load of the structure, D, located or assigned to Level x

Figure 4.12: ASCE 7-05 §11.7.2

This will effectively reduce the previous calculated design loads by approximately 3 times; which will result in drastically lower design values.

			Total Dead Lo	ad for Seismi	c Calculati	ion					
				$\mathbf{W}_{\mathbf{T}}$							
				Load type							
Floor Level	square footage	wall	Plank & Topping	Superimposed	Columns	Beams	equipment	roof	exterior walls	Floor weight	Fx
		square footage	psf	MEP/Partitions	kips	lb/ft ²	psf	psf	psf/wall	Totals	
			93.0	35.0		10.0	1.0	93.0	28.6	W _t	kips
Ground	8240										
Level 1	20405	170	1897.67	714.18	70.07	204.05	20.41	0	4.86	2906.4	29.06
Level 2	45545	458	4235.69	1594.08	60.70	455.45	45.55	0	13.10	6391.5	63.91
Level 3	42165	458	3921.35	1475.78	82.79	421.65	42.17	0	13.10	5943.7	59.44
Level 5	31525	458	2931.83	1103.38	50.20	315.25	31.53	0	13.10	4432.2	44.32
Level 6	27720	678	2577.96	970.20	47.40	277.20	27.72	0	19.39	3900.5	39.00
Level 7	27760	678	2581.68	971.60	35.83	277.60	27.76	0	19.39	3894.5	38.94
Level 8 (roof)	45545							4235.69		4235.7	42.36
TOTALS	248905	2900	18146.16	6829.2	346.99	1951.2	195.12	4235.7	82.94		
IOTALS	240703	2900	10140.10	0029.2	340.77	1731.2	193.12	7433./	02.74		
						$W_T =$	31787.3	kips			
					Base S	hear =	317.04	kips			

Figure 4.13: EXCEL spreadsheet calculating seismic base and story shear with additional loading of proposed system

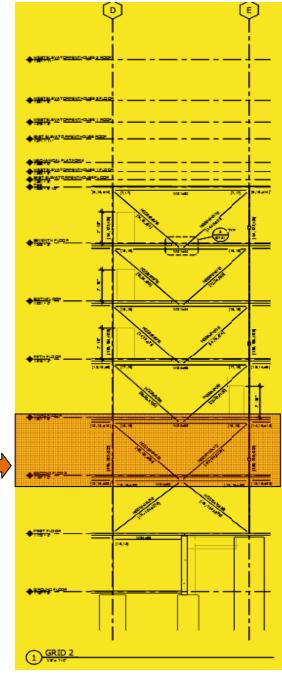
Controlling lateral load combination: 1.6W or 1.0E for just lateral loading

1.6W = 1.6(557.550) =892kips, from wind N-S; CONTROLS

1.6W = 1.6(545.75) = 873kips, from wind E-W

1.0E = 1.0(317.04) = 317kips, from Seismic

A factored load of 1.6 times the wind force at each level will be used in calculations to determine, relative stiffness of braces on each level, distribution of load to braces, and eventually the force in the members.


Lateral System Analysis:

With the design of a different gravity load system the existing lateral resisting system has to be checked for compatibility of the two systems. The system being designed and implemented is commonly referred to as a girder-slab floor system. This particular girder configuration cannot have moment connections at its end supports, due to the fact that if the top flange is in tension (-moment) then the composite member properties/strength would be reduced to just the tensile capacity of the top bar since the concrete in tension theoretically has no tensile capacity that can be relied upon. A concentrically braced frame is the preferred and most economical lateral resistance system for this type of construction. This is also the as designed system type; however, the connections on the drawings were not included and were left up to the contractors design as per my construction document set. The connections to the columns and girders from the lateral elements will be designed as an additional aspect of the lateral load transfer to the gravity components. The lateral elements will again consist of HSS members. The following section of this report goes into detail about the analysis method and force distribution for the lateral force resisting system.

Force Distribution:

For the scope and purpose of this report the braced frame section from level 3 to level 5 along grid line 2 between grid lines D-E will be analyzed; which is what I am calling frame #2 and will be assumed to be resisting N-S applied wind forces. See

Figure 4.14 below for frame detail.

See enlarged view on following page Figure 4.15 for more as designed details

Figure 4.14: Braced frame at grid 2 between D & E

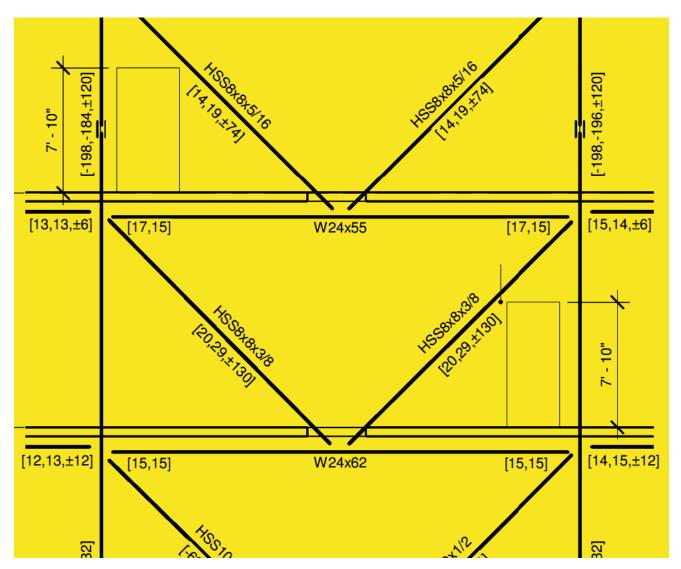


Figure 4.15: Enlarged view of braced frame at grid 2 between D & E

Analysis Method:

As shown earlier in Figures 4.7 & 4.8 a force on an upper level of a Chevron type braced frame will induce a compressive force in one brace and a tension force in the other that will carry itself down through all bracing members below that level. It will also introduce a compressive force in one column and a tensile force in the other that will compound itself linearly in each respective vertical element.

Therefore the forces at each level cannot be analyzed individually; they will have to be combined with the forces acting on the levels above to get a more accurate result. This is also part of the reason why the HSS member sizes increase in section and wall thickness as more floors are added above even as the forces at each level are relatively the same.

The first step in the analysis process is to assume the floor levels are acting as rigid diaphragms and to determine the center of mass for the rigid diaphragm above the level being analyzed, which is the area/mass that is applying the load to the braces. See Appendix E for these calculations.

Next would be to calculate the center of rigidity for each of these levels to determine how much of the force at the respective level will go into each brace at that level based on their relative stiffnesses to each other and torsional effects due to eccentric differences in center of mass versus center of rigidity. This is the axial force being introduced into the bracing elements below the level. Note: Only the diagonal braces in the same direction of the loading will be considered to be resisting the lateral load in that direction; and the columns and beams that make up part of the braced frame are not considered for stiffness criteria.

Once the level forces, center of mass, center of rigidity and relative stiffnesses have been determined then the direct force and eccentric force at that level can be calculated. These two forces can then be added together to determine the force being applied at that level to each individual frame. The value for the eccentric force being added to or subtracted from the direct force will always be considered positive since load reversal can be applied and the eccentric forces would switch signs but he direct forces would remain the same.

These forces can then be applied to the Free Body Diagram for the frame and the element member forces can be determined and checked against the computed design values and subsequent sizes.

See Appendix E for drawings and calculations including FBD of braced frame #2 and SAP verification of FBD and member forces.

Tabulated values of hand calculations

		Fra	me Stiffn	ess (kip	/in)		Center of	er of Rigidity Story		ear (kips)	Eccent	ricity
Level	1	2	3	4	5	6	X (ft)	Y (ft)	N-S	E-W	$\mathbf{e}_{\mathbf{x}}$ (ft)	e _y (ft)
3	1198.01	1198.01	2419.07	1573.30	2050.06	2120.89	106.06	121.8	98.45	81.26	19.77	12.3
5	1198.01	1198.01	1520.56	1573.30	2050.06	2120.89	106.06	107.53	100.27	84.91	19.77	1.97
6	1009.10	1198.01	1198.01	1239.57	1573.30	1627.66	105.51	101.37	93.73	84.64	25.89	3.67
7	1009.10	1009.10	1009.10	1044.10	1239.57	1080.18	103.12	100.67	86.37	83.51	7.20	32.13
8	1009.10	1009.10	1009.10	1044.10	1239.57	1080.18	103.12	100.67	62.53	49.50	7.20	32.13
Average	1355.83	1403.06	1788.96	1618.59	2038.14	2007.45	130.9675	133.01			19.9575	20.55
								Total=	441.35	383.82		

Table 4.6: Tabulated values to evaluate member forces

Lovel	Direct Shear (kips)							Torsional Shear (kips) *5% minimum of Direct						
Level	1 2 3 4				5	6	1	2	3	4	5	6		
3	24.50	24.50	49.46	22.26	29.00	30.00	1.91	8.05	16.668	9.604	3.844	*1.50		
5	30.67	30.67	38.93	23.26	30.30	31.35	2.80	11.13	13.93	1.49	*1.52	*1.57		
6	32.98	32.98	27.78	23.63	29.99	31.02	2.26	14.35	16.61	2.76	2.07	*1.55		
7	28.79	28.79	28.79	25.92	30.77	26.82	*1.44	3.63	4.28	23.78	18.10	5.68		
8	20.84	20.84	20.84	15.36	18.24	15.90	*1.04	2.63	3.10	14.10	10.73	3.37		
Total	137.78	137.78	165.80	110.43	138.30	135.09	9.45	39.79	37.92	42.13	36.26	13.67		

	Total Shear (kips)								
Frame	1	2	3	4	5	6			
Level 3	26.41	57.51	66.13	31.86	32.84	31.50			
Level 5	33.47	41.80	52.86	24.75	31.82	32.92			
Level 6	35.24	47.33	44.39	26.39	32.06	32.57			
Level 7	30.23	32.42	33.07	49.70	48.87	32.50			
Level 8	21.88	23.47	23.94	29.46	28.97	19.27			
Total	147.23	202.53	220.39	162.16	174.56	148.76			

Table 4.7: Resulting shears due to wind loads

Deflection criteria as per 2006 International Building Code:

Allowable building drift: $\Delta_{\text{wind}} = H/400$

Allowable story drift: $\Delta_{\text{seismic}} = 0.10h_{\text{sx}}$ (Table 12.12-1 ASCE 7-05)

Equation used to calculate story drift Δ_s : $K=P/\Delta_p$ $\Delta_p=P/K$

	Wind Drift Comparison of Frame #2										
Level	Story	Story	All	owable	Total	Allowable Total Drift Δ					
	Height	Drift		Δ_{wind} =	= H/400	Drift	$_{\text{wind}} = H/400$				
	(ft)	(in)	(in)			(in)	(in)				
3	14.67	0.0782	<	< 0.44 Acceptable		0.0782	<	1.32	Acceptable		
5	14.67	0.0837	<	0.44	Acceptable	0.162	<	1.76	Acceptable		
6	14.67	0.0782	<	0.44	Acceptable	0.240	<	2.2	Acceptable		
7	14.67	0.0856	< 0.44 Acceptable		0.326	<	2.64	Acceptable			
8/roof	14.67	0.0620	<	0.44	Acceptable	0.388	<	3.08	Acceptable		

Table 4.8: Drift Values from hand calculations

SAP 2000 2d Frame Analysis to compare with hand calculations:

The relative stiffness of each frame can be approximated by taking the inverse of the deflection of each frame and relating them to each other by taking its value and dividing by the sum of the other frames in the same participating direction. This could also be done on a level by level basis to get a more accurate assumption. Since the second approach was used for the hand calculations the computer analysis will be done the same way for more consistency.

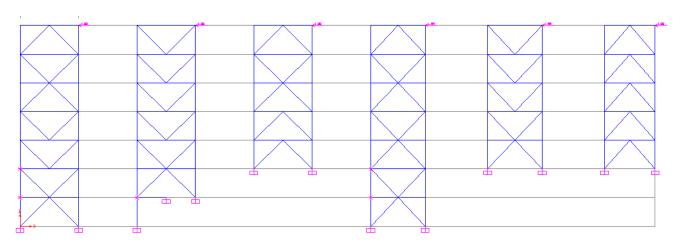


Figure 4.16: Frames 1-6 with 1 kip load applied to determine relative stiffnesses of frames.

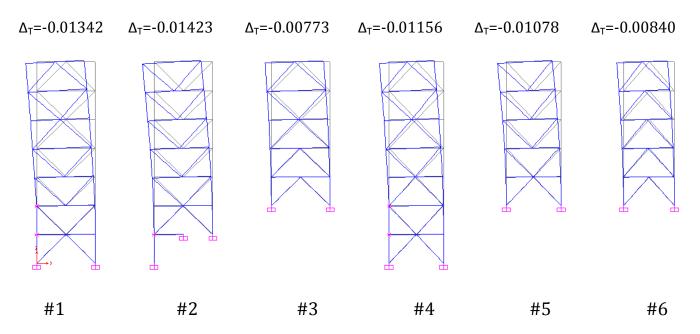


Figure 4.17: Deflected shapes with total displacements caused by 1 kip at top

Level	Displacement for Stiffness Calculations (Δ_s)											
	Frames 1-6											
3	0.00251	0.00251 0.00220 0.00005 0.00157 0.00005 0.00007										
5	0.00507	0.00507										
6	0.00741	0.00761	0.00317	0.00581	0.00445	0.00353						
7	0.01042	0.01042										
8/roof	0.01342	0.01423	0.00773	0.01156	0.01078	0.00840						

Table 4.9: Frames 1-6 showing displaced shape due to 1 kip load @ top of frame and relative displacements at each level.

Level	K for each brace $(1/\Delta_s)$									
	Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame6				
3	398.406	454.545	20000	636.943	20000	14285.71				
5	197.239	216.920	595.238	269.542	492.611	549.451				
6	134.953	131.406	315.457	172.117	224.719	283.286				
7	95.9691	91.4913	183.486	116.279	132.275	170.940				
8/roof	74.5156	70.2741	129.366	86.5052	92.7644	119.048				

Table 4.10: Stiffness of each brace at each level (k/in) based off of 1k load @ top of frame

Level	% Stiffness per Brace (K/ΣK)									
	Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame6				
3	1.91	2.18	95.91	1.83	57.31	40.86				
5	19.54	21.49	58.97	20.55	37.56	41.89				
6	23.20	22.59	54.22	25.31	33.04	41.65				
7	25.87	24.66	49.46	27.72	31.53	40.75				
8/roof	27.18	25.54	47.19	29.00	31.10	39.91				

Table 4.11: Percentage of load to each frame at each level based off of 1k load @ top of frame

To determine the total force that is transmitted into each brace on each level the values from Table 4.11; as a fraction, are multiplied by the story shear at the corresponding level, which can be found in Tables 4.3 & 4.5. This however does not account for the torsional shear; which can be seen from Table 4.7 in the hand calculations could be close to 30% of the direct shear. To try and reasonably account for these torsional shears the eccentricities calculated by hand are assumed to be accurate here.

	SAP Model Calculations											
Lovel		I	Direct Sh	ear (kips)		Toi	rsional Sh	ear (kips) *	5% minimu	m of Dire	ct
Level	1	2	3	4	5	6	1	2	4	5	6	
3	1.88	2.15	94.42	1.49	46.57	33.20	0.11	0.54	24.42	2.63	25.35	5.27
5	19.59	21.55	59.13	17.45	31.89	35.57	1.57	6.86	18.57	1.31	1.59	1.78
6	21.75	21.17	50.82	21.42	27.97	35.25	1.53	7.99	22.22	2.72	2.09	1.76
7	22.34	21.30	42.72	23.15	26.33	34.03	1.08	2.30	5.44	23.74	17.31	8.06
8	17.00	15.97	29.51	14.36	15.39	19.76	0.82	1.77	3.85	14.37	9.88	4.56
Total	82.56	82.14	276.60	77.87	148.15	157.81	5.11	19.46	74.50	44.76	56.22	21.43

	Total Shear (kips)										
Frame 1 2 3 4 5 6											
Level 3	1.99	2.69	118.84	4.12	71.92	38.47					
Level 5	21.16	28.41	77.70	18.76	33.48	37.35					
Level 6	23.28	29.16	73.04	24.14	30.06	37.01					
Level 7	23.42	23.60	48.16	46.89	43.64	42.09					
Level 8	17.82	17.74	33.36	28.73	25.27	24.32					
Total	87.67	101.60	351.10	122.63	204.37	179.24					

Table 4.12: Resulting shears due to wind loads from SAP 2000

The computed total story shears from Table 4.12 are placed at the nodes of the frames on their corresponding levels in the 2D frame model to evaluate total drift and compare the values with the hand calculations and the 2006 IBC deflection criteria.

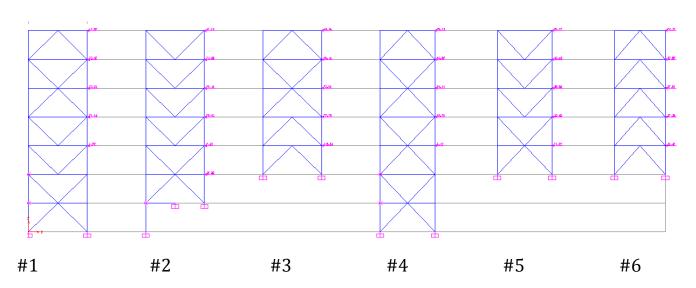


Figure 4.18: Frames 1-6 with loads applied to determine deflections of frames to compare with hand calculations.

Comparisons:

	Wind Drift Comparison of Frame #2 using SAP 2000 2D									
Level	Story	Story		Allowa	able Story	Total	Al	lowabl	e Total Drift	
	Height	Drift	D	rift Δ "	Drift	$\Delta_{\text{wind}} = H/400$				
	(ft)	(in)			(in)	(in)		(in)		
3	14.67	0.1214	٧	0.44	Acceptable	0.18813	'	1.32	Acceptable	
5	14.67	0.1858	٧	0.44	Acceptable	0.37396	<	1.76	Acceptable	
6	14.67	0.1912	'	0.44	Acceptable	0.56512	<	2.2	Acceptable	
7	14.67	0.1703	<	0.44	Acceptable	0.73544	<	2.64	Acceptable	
8/roof	14.67	0.1456	<	< 0.44 Acceptable		0.88103	<	3.08	Acceptable	
	Wind Di	rift Comp	oar	ison o	f Frame #2 ι	ising hand	d ca	lculat	ions	
Level	Story	Story		Allowa	able Story	Total	Allowable Total Drift			
	Height	Drift	D	rift Δ "	$v_{\text{ind}} = H/400$	Drift		Δ_{wind}	= H/400	
	(ft)	(in)			(in)	(in)			(in)	
3	14.67	0.0782	٧	0.44	Acceptable	0.0782	'	1.32	Acceptable	
5	14.67	0.0837	٧	0.44	Acceptable	0.162	<	1.76	Acceptable	
6	14.67	0.0782	٧	0.44	Acceptable	0.240	'	2.2	Acceptable	
7	14.67	0.0856	٧	0.44	Acceptable	0.326	<	2.64	Acceptable	
8/roof	14.67	0.0620	<	0.44	Acceptable	0.388	<	3.08	Acceptable	

Table 4.13: Drift comparison table

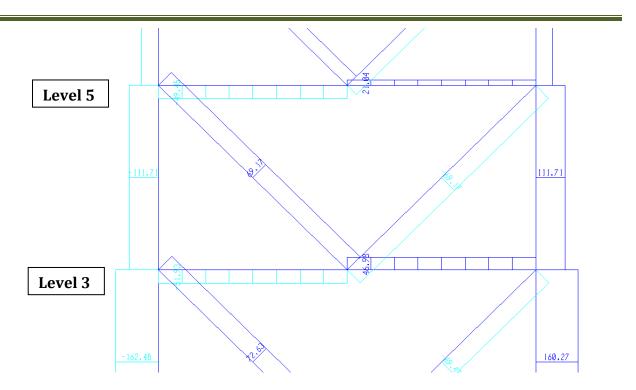


Figure 4.19: SAP 2000 frame #2 axial load output

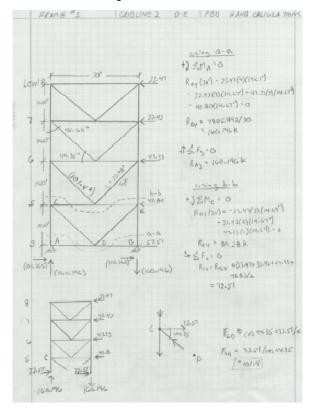


Figure 4.20: FBD of hand calculation for frame #2 to compare values with Figure 4.19. An enlarged view of this figure can be found in the beginning of Appendix F.

BRACED FRAME CONNECTION NOTES

SEE PLAN, BRACE ELEVATIONS, AND COLUMN SCHEDULE FOR MEMEBERS SIZES.

2. BRACING AND BEAM MEMBER SERVICE (UNFACTORED) FORCES ARE INDICATED ON ELEVATIONS, AS SHOWN IN FIGURE BELOW.

Hd=AXIAL DEAD LOAD

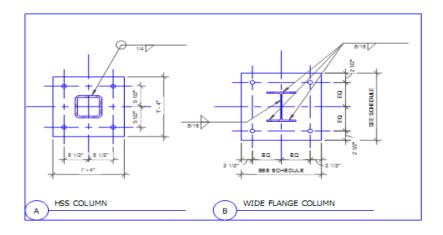
HI=AXIAL LIVE LOAD

Hw= AXIAL WIND LOAD

Vd=SHEAR DEAD LOAD

TENSION AXIAL FORCE AND DOWNWARD SHEAR FORCE ARE POSITIVE.
COMPRESSION AXIAL FORCE AND UPWARDS SHEAR FORCE ARE NEGATIVE.

- 3. NO REDUCTION IN SERVICE LEVEL FORCES OR INCREASES IN ALLOWABLE STRESSES SHALL BE ALLOWED IN DESIGN OF CONNECTIONS.
- FABRICATOR TO ENSURE BRACE LENGTHS AND SLOT DIMENSIONS ALLOW PLACEMENT OF BRACE BETWEEN GUSSET [PLATES.
- 5. SEE GENERAL STRUCTURAL NOTES ON SHEET S001 FOR ADDITIONAL INFORMATION.
- 6. BEAMS AND COLUMNS ARE NOT DESIGNED FOR BENDING MOMENT DUE TO CONNECTION ECCENTRICITY. PROPORTIN CONNECTION TO TO ELIMINATE ADDITIONAL MOMENTS ON BEAMS AND COLUMNS
- 7. AXIAL FORCES IN BRACED FRAME BEAMS ARE NOT SHOWN. DETERMINE FORCE REQUIRED TO OBTAIN CONNECTION FORCE EQUILIBRIUM.


BRACED FRAME NOTES 1" = 1'-0"

VI=SHEAR LIVE LOAD

Figure 4.21: Description from print to show value meanings and to compare with SAP and hand calculations.

Axial Fo	rce in Brace from Lo	evel 3 to Level 5 in F	rame #2						
	Print	Hand Calculations	SAP 2000						
H _w 130kips 101.4kips 69.17kips									

Table 4.14: Brace comparison values

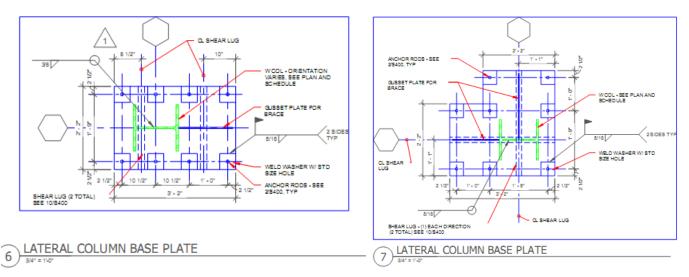


Figure 4.22: Gravity and Lateral base plate to foundation connection detail

Overturning:

The drawings in Figure 4.22 depict the differences in the base plate to caisson connection details for lateral versus gravity columns. The reason for the difference in anchor size, depth, number and layout is because of the overturning moment caused by the lateral loading on the structure. As shown in Figures 4.19 & 4.20 at each braced frame location there will be one side of the frame columns in compression and the other in tension.

Depending on the lateral loading direction there will also be a moment of approximately 20,000-23,000 foot kips applied to the base of the columns, this load (moment) would be distributed among the columns which are participating in the loaded direction similar to the manner in which the lateral load is distributed to the braced frames.

The uplift force seen in the columns that are in tension would be negated by the gravity forces in the columns imposed by dead and live loading of the structure as well as the connected weight of the 30"-78" Ø and up to 79' deep caissons; therefore overturning issues would not be a concern or issue.

Member Checks:

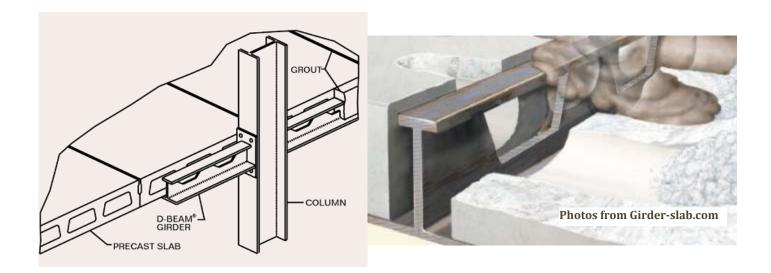
The bracing member compared in Table 4.14 is checked for strength and size using the hand calculation and the value given on the construction documents. One column in the same braced frame between levels 3 and 5 is also checked for compression, lateral stability and size. To compare and evaluate the members in the design documents the gravity loads applied to the columns, beams and HSS members and any moments that are applied to the columns also have to be considered. After determining the gravity loads, the loads will be applied to a simple 2D SAP model to get the member forces to be added to the lateral analysis.

These calculations can be found in Appendix F at the end of this report.

Lateral System Conclusions:

Based on the calculations and comparisons in this report the lateral force resisting system is designed for strength rather than for drift considerations. This conclusion seems completely plausible since two of the levels are relatively small compared to the rest of the structure and are only minimally exposed on one side. There are five other main levels above ground and a smaller penthouse level on the roof. The height of these levels compared to the length and width of the structure is approximately 1:2 making the building relatively short, almost symmetrically square and stocky.

These features would indicate that the structures lateral deformations should be less than code standards as compared to taller and thinner structures and therefore the bracing elements would be designed more for a governing strength limit state.


Hand and SAP calculated drift values compiled in Table 3.13 on page 26 for code vs. calculated values shows that the story and total drifts are approximately 3.5 times less than code standards indicating that a smaller profile could have been used to control building drift.

It was also shown that the construction document data for the lateral system and bracing members was oversized as compared to the hand calculations by a factor of 40-50%. The bracing member that was checked shows a service wind load (unfactored) of 130kips on the construction documents while the hand calculated values are 101kips factored.

This discrepancy in values and subsequent member sizes could be from multiple reasons. First some of the assumptions and simplifications of the wind values may have been different than design values and led to lower than designed for wind loads. Secondly only the wind was considered as contributing to the axial load in the braces. The gravity and live loads will also induce axial loads in these members. The design loads were also done with the original penthouse designs being larger and a full height rooftop screen wall (13' high), both of which will increase the lateral design loads. The screen wall was omitted and the penthouses reduced in size. The controlling limit states for the connections have also not been considered at this point and may contribute to an increase in member sizes. Vibration concerns in hospital operating rooms and rooms with sensitive equipment may also have an effect on member sizes.

Redesigned Gravity System

In the second of the three previous technical reports, alternate floor systems were briefly introduced and analyzed. As part of this process the girder-slab gravity type floor system appeared to be a possible viable substitute for the existing design; however, its concept is relatively new and current use has been restricted to smaller spans and much smaller loading conditions. To determine if this is in fact a theoretical as well as practical solution for the building structure several aspects will have to be examined more closely. Starting with the list of advantages and disadvantages listed in Technical Report #2, each entry will have to be evaluated and accepted or dispelled for this particular building type, bay sizing and loading configuration.

Figures 4.23 & 4.24: Modified castellated sections

Disadvantages:

- ♣ Girders and columns would need fireproofing

- ♣ Floor penetrations must be well coordinated with the slab designer/manufacture

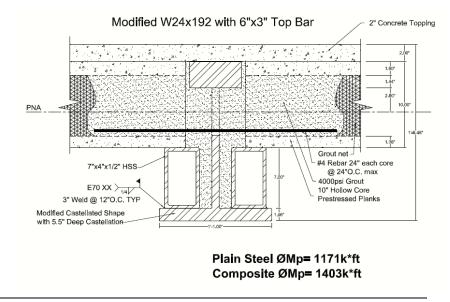
Advantages:

- ♣ Easy & fast to install
- ♣ The lateral system can still be utilized
- ♣ No formwork required and concrete slabs are already at usable capacity when they arrive
- No intermediate beams in interior of bays needed
- ♣ Can be installed in any type of weather
- **♣** Other trades can start work underneath almost immediately
- ♣ Additional unobstructed ceiling space for MEP's.
- Meets or exceeds floor fireproofing requirements
- ♣ Reduce noise transmission from floor to floor through baffled cavities
- ♣ No increase in floor to floor heights
- ♣ Reduces overall weight of the structure

To evaluate these two lists an initial girder-slab floor design process will have to be determined and followed. The following is a list of steps in the redesign procedure. Steps in the redesign process:

- 1. Determine the design loads that the structure will be resisting both gravity and lateral per ASCE 7-05.
- 2. Design of the hollow core planks to find the total depth required and the weight per square foot of the floor system.
- 3. Configure the load path to be followed including which type of connections will be used between members.
- 4. Calculate the shape and size of the castellated girders needed to resist the shears and moments induced on them by the floor loading.
- 5. Assuming the use of the existing column sizes, calculate the total weight of the building.
- 6. Compare the base shear values for wind and seismic, rework load combinations as per ASCE 7-05 and find which combination is the controlling combination.
- 7. Distribution of lateral loads on the structure.
- 8. Size column, girder and bracing members for total loads.

Analysis Process:


To determine the design loads for the first step of this design process, two separate approaches were used. The first was to determine which areas of the structure would experience the most gravitational loading as per ASCE 7-05 since this type of loading would be the majority or sole loading condition on almost all girders. The lateral force induced into the girders axially will be minimal compared to that of the gravity loading. It was determined that these areas would be in the girders that support the rooftop level where there are large live loads from equipment, and hallways and corridors on the lower levels where live loads are larger and non-reduced.

The second approach was to cross check these areas with the as designed beam and girder sizes to determine the location and sizes of the largest members. The same areas that were determined to carry the largest loads in the first step coincided with the locations of the largest designed members. From these two combined approaches the largest as designed composite member moment was determined and compared with the values of the simply supported girder moment value.

The largest calculated M_u value is approximately 77% of the largest ΦM_n of the as designed W-Shapes; therefore, this gives a starting point to develop a composite modified castellated section to carry the applied loading and an identical non-

composite castellated section to carry the construction loading and control deflections until the grout in the composite section reaches its 28 day compressive strength.

Figure 4.25: 1 of 5 designed sections

Calculated Values:

Span	M _u @ 80psf LL & Constant DL	M _u @ 125psf LL & Constant DL
(ft)	(k*ft)	(k*ft)
14	207	260
27	770	967
28	828	1040
29	888	1115
30	950	1193
31	1014	1274
32	1080	1358

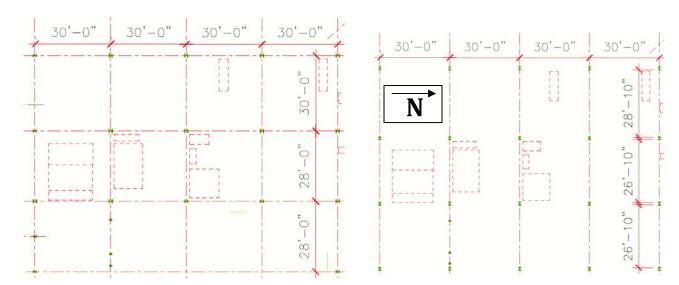
Table 4.15: Calculated values for M_u

Modified	Shear	Total Depth	Non-composite	Composite
Girder	Capacity@	Inc. 2"	Plastic Moment	Plastic Moment
Shape Size	Least	Concrete	Capacity	Capacity
(Modified)	Section	Topping	(ΦM_p)	(ΦM_{pc})
	(kips)	(in)	(k*ft)	(k*ft)
W _m 27x217	359.8	22.50	1328	1674
W _m 24x192	314.0	20.46	1171	1403
W _m 18x211	345.0	18.91	985	1287
W _m 14x193	233.6	15.44	652	877
W _m 10x68	70.1	12	286	Uncalculated

Table 4.16: Calculated values for Modified Girders

Calculations and data can be found in Appendix G at the end of this report for loading, girder sizing and girder capacities.

The load path determination in the second step of the design process is determined through the design of the connection details which is covered later in this report.

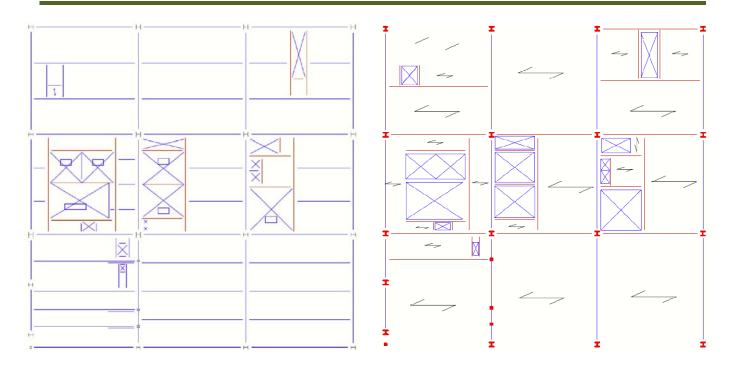

For the design and determination of the prestressed concrete hollow core planks a plank size and type was selected from Nitterhouse Concrete Products design literature. See Appendix G for selected plank and loading capacities.

The total weight of the structure was compiled and tabulated in an EXCEL spreadsheet and shown in Figure 4.13 for seismic calculations.

System Component Viability:

Once these initial steps have been completed a closer inspection of the disadvantages has to be completed to determine if any of the negative drawbacks of the system can be mitigated. The most detrimental aspects of the system would be the longer spans, loads that are 2.5-3 times larger than conventional girder-slab systems, and accommodating multiple and larger openings. These will be the main focus; if these issues cannot be properly addressed then the system is not going to be an option.

An initial step to reduce the moment at midspan of the modified girders was to analyze whether or not the columns could be rotated 90° about their axes to minimize the span length and make connections from girder to columns in the strong axis direction. The majority of the columns strong axes run in the N-S direction which is the same direction in which all of the bay sizes have 30' spans. In the E-W direction the majority of the spans are 28' or less. Having the columns in this orientation could effectively reduce most spans and subsequently their maximum applied moment; however, there would still be some remaining bay spans in this direction that would remain at 30'. These bays however would be in areas where there is reduced loading, somewhat compensating for the increased length.

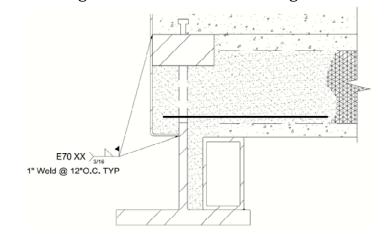

Figures 4.26 & 4.27: Partial 3rd floor as designed column layout with girders; proposed column layout with girder direction and spacing.

With the original design and the subsequent proposed redesign both having concentric shear connections at the columns, and the columns not participating in the lateral load resistance except to carry the transferred axial loads, the orientation of the columns is left up to how the connections will be made as well as any architectural considerations.

Since the bottom flange of the proposed modified girders would not fit between the flanges of the columns a better and more constructible connection location would be to the column flanges. With the columns rotated 90° from their present axes this would make the connection easier, more constructible and shorten the span approximately one foot. This would eliminate the need for an extended shear tab back into the web of the column on heavily loaded main girder spans.

Columns in the inside curved radius section of the building are already in this orientation and the columns along the exterior curved radius do not have to be adjusted for the girders. The existing girders along the outside perimeter of the structure would remain as normal W-shaped sections supporting the hollow-core slab from underneath. Some of these girders may have to be increased to carry the additional applied load of the slabs. Keeping these members the same would eliminate the need for a structural exterior facade redesign.

The remaining issue of multiple/large openings in the floor slabs would have to be handled in a manner similar to that of the original design. The original design accomplished this by the use of additional beams in and around the openings to support the slab edges. These additional beams/girders would have to be of the modified designs since the only place to attach them would be to the webs of the support girders to maintain non-moment (shear) type connections; and the slabs would be supported by the bottom flange of these additional beams. The direction of the hollow-core slabs would have to be rotated 90° in some of these areas to minimize the use of additional beams; however rotating the slab directions would compromise the composite action of the girder sections since the cores from one slab would not be able to be grouted integrally with the cores on the other side of the modified girder which run perpendicular to them.



Figures 4.28 & 4.29: Original opening support beams and; proposed slab layout and support girders.

As shown in Figures 4.28 & 4.29 above, additional beams can be added to the system. The direction of the hollow-core slabs will remain as consistent as possible to maintain rigidity and stability from slab to slab. Where the girders/beams are alongside an opening the member would not be fully laterally braced along its compression flange on both sides and the calculated ΦM_{pc} value of the member may not be obtainable. Therefore it is suggested that in these instances $3/8"Ø \times 1-1/2"$ long shear studs be attached along the top flange of the girder at 2' O.C. spacing to "fully laterally brace" the top compression flange after the cells have been grouted and

the 2" topping has been placed. It is also suggested that steel detailing around the inside of the open areas will need to be completed to let the grout flow through the castellation and be able to provide some composite action with the girder.

Figure 4.30: Opening Detail

Connections:

Proposed system MAE considerations:

Another aspect of the proposed systems viability as an alternative to the original design is if the connections at bracing and typical maximum load bearing areas can be designed as simple shear connections. To design these connections AISC 13 is used for design specifications. Since all of the connections include modified members and smaller depth areas with higher loads the design manual tables and aids will not be applicable and all connections will have to be designed and checked with all relevant limit states in the steel manual specifications section J and Parts 9 & 10.

Load Determinations:

To determine the design loads for the three typical connections a full factored dead load plus a factored live load of 125psf was used on all braced framed sections and modeled in SAP 2000. The calculated factored lateral loads were additionally added to the 2D frame and all frames were analyzed with just gravity and a lateral – gravity combination. The loads on all these members' intersections were then used to determine the areas where the connections would have to resist the most shear and tensile force limit states since the connections were designed as simple shear connections and contained no moments. After the locations and magnitudes of the forces were determined they were increased by 30% to make sure that the shear connections would be able to be designed with even larger loads in a reduced depth situation and to compensate for possible differences between calculated loads and as designed loads.

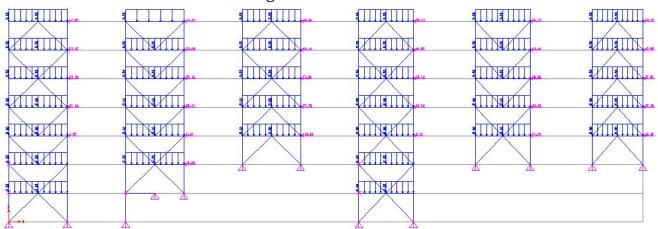


Figure 4.31: Full gravity and calculated lateral loads for connection designs

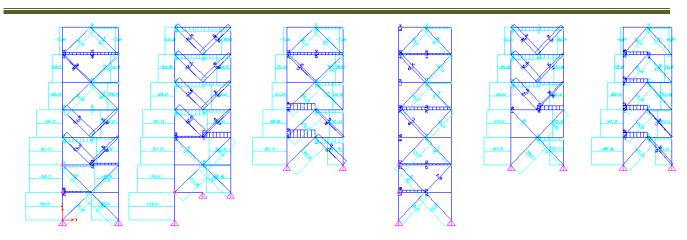


Figure 4.32: Axial loads generated by Figure 4.31

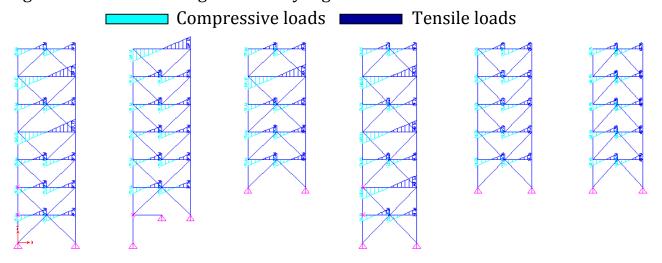


Figure 4.33: Shears generated by Figure 4.31

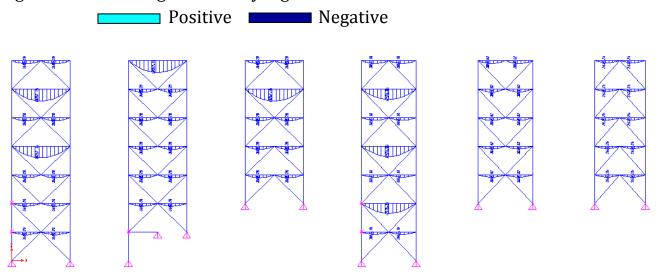


Figure 4.34: Moments induced by loading from Figure 4.31 (ALL ARE POSITIVE)

Designs:

Three connection types were designed to simulate the most frequently used connections with the most loading.

- 1) Modified Girder to Modified Girder (where openings occur)
- 2) Column to Girder to HSS Brace combination
- 3) Girder to Column web using an extended shear tab
- 4) Girder to Column flange (same as 1 above)

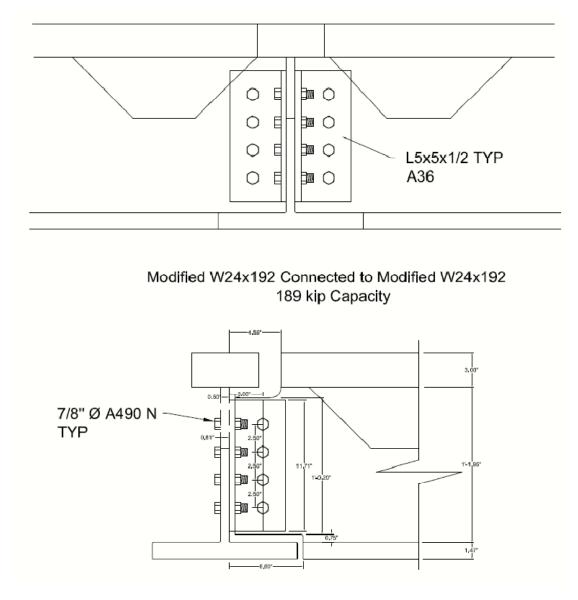


Figure 4.35: Connection 1 also used for column flange to girder web

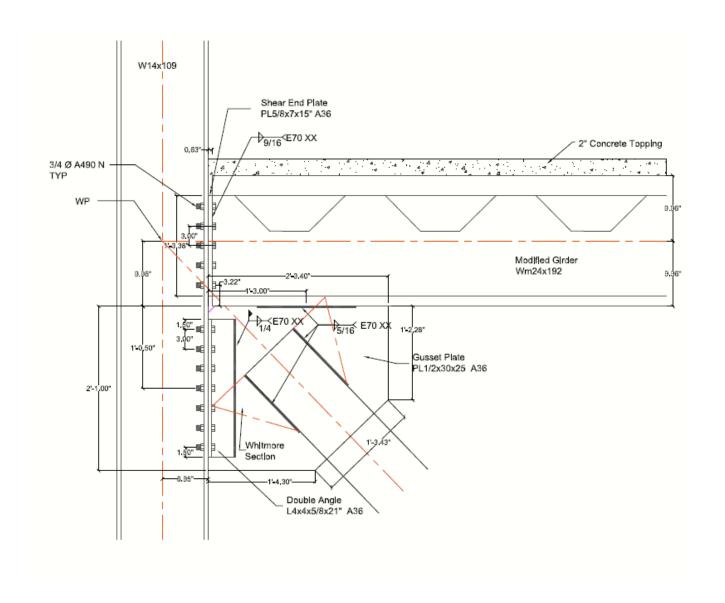
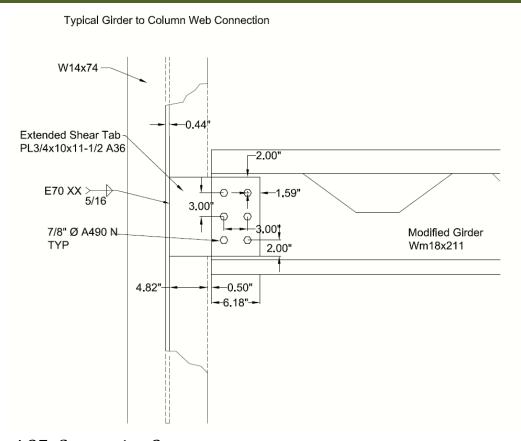
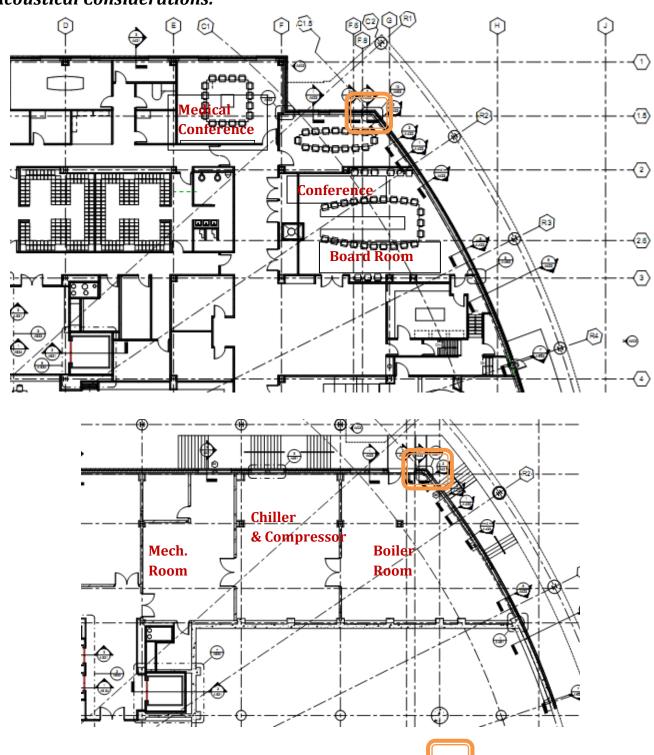


Figure 4.36: Connection 2




Figure 4.37: Connection 3
See Appendix J for the design calculations.

Connection Conclusions:

Reduced depth dimensions and increased loading requirements made the designs more challenging since most values could not be pulled from AISC Tables and simple shear design considerations had to be adhered to such as rotational ductility requirements found in AISC 13; however, based on the three types of connections that were designed to transfer the forces between members the results determined that the calculated factored loads plus an additional 30% can be accomplished in connecting the lateral and gravity systems to the vertical elements; however, it was determined that in order to achieve some of these connections a larger than necessary modified girder (W_m 24x192) was needed for its depth. This practically makes the design of the structure using only one size girder.

Breadth Options:

Acoustical Considerations:

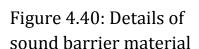
Part of level 1 is slab on grade and within this section are the chiller room and the boiler room. The walls enclosing the chiller room are 8" CMU's on three sides and a 16" thick reinforced concrete wall on the other. The ceiling separating the two spaces consists of 3-1/2" thick concrete on a 3" deep corrugated metal deck with carpeting on the conference room floor. There are two centrifugal chillers located directly below the medical staff conference room which also cantilevers out over the sidewalk.

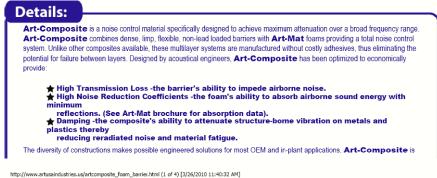
Design values for the acoustical analysis were taken from various tables and charts in the ASHRAE Handbooks. ASHRAE 2003 Applications Handbook Figure 12 gives typical values for maximum and minimum sound levels for a centrifugal chiller. The maximum values are used and adjusted using Figure 14 to get the built-up estimated sound level. To be able to use this figure an estimated "boxed" size of the chiller is compared to the overall room size to get a ratio for the horizontal axis, and an average sound absorption coefficient is determined based on the room surfaces. For surfaces of concrete and CMU's a coefficient of 0.10 is used. The calculated sound level from both chillers operating at the same time at maximum levels is approximately 105 dBA including sound build-up from the almost all concrete room surfaces and dBA weighting effects.

Calculations, charts and figures for sound levels can be found in Appendix K at the end of this report.

From Table 34 in ASHRAE 2003 Applications Handbook 47.29 a design guideline for HVAC-related background sound level in the medical staff conference room can be estimated at 25-30dBA; therefore the transmission loss from the chiller room to the conference room through the ceiling/floor system needs to be approximately 75 dBA. The Sound Transmission Class (STC); a single number representation of transmission loss (TL) for all octave bands, for the as designed composite deck system with carpeting above is approximately 51 dB and 57 dB for the proposed redesign floor system. If the assumption is made that the TL = STC then the background sound level from the chiller room exceeds the acceptable by 24 and 18 dBA respectively. The dBA levels associated with the two boilers is much lower than the chiller room levels and are not high enough to be a concern.

Receiver Room Sound Correction As Designed								
Hz	63	125	250	500	1000	2000	4000	8000
Max. dB	80	75	92	88	90	87	79	67
Build up	+9	+9	+9	+9	+9	+9	+9	+9
total	89	84	101	97	99	96	88	76
A weighting	-25	-15	-8	-3	+0	+1	+1	+1
A weighted	64	69	93	94	99	97	89	75
adjusted								
TOTAL (dBA)	64	70	93	95	100	102	102	102


Table 4.17: dBA sound level in conference room from one chiller


To account for both chillers operating at the same time and at the same level the dBA for two chillers would be combined to give a background sound level of **105dBA**; however, the TL values for the individual octave bands for the floor construction were not obtained and subtracted from the above table. The STC values of 51(as designed) and 57 (proposed) for the systems were obtained and subtracted from the 105dBA to obtain a receiver room background noise level from the equipment. A background noise level range of 25-35 from ASHRAE Applications Handbook 1993, Chapter 43.5 Table 2 is used for comparison.

Floor Systems Effectiveness Comparison				
As Designed	Proposed			
25≥105-51=54	25≥105-57=48			
25<54 NOT ACCEPTABLE	25<48 NOT ACCEPTABLE			

Table 4.18

The tables on the following page compare the two systems when using a sound barrier. A product from ArtUSA was used for determinations

oustical Properties:							
	Sound T	ransn	nissio	n Loss,	dB, (A	STM E9	0-75)
Barrier Weight			Frequ	ency (H	IZ) (In. / No	m.)	
lb/ft ²	125	250	500	1000	2000	4000	STC
.5	10	12	16	21	26	32	20
.75	12	16	20	25	20	34	23
1	15	17	21	27	32	36	26
1.5	14	19	25	36	33	37	30

Figure 4.41: Acoustical TL Values for sound barrier

Rece	Receiver Room Sound Correction As Designed								
Hz	63	125	250	500	1000	2000	4000	8000	
Max. dB	80	75	92	88	90	87	79	67	
Build up	+6	+6	+6	+6	+6	+6	+6	+6	
total	86	81	98	94	96	93	85	73	
(+A)	+1	+0	-1	-2	-3	-4	-5	-5	
(+B)	-9	-9	-9	-9	-9	-9	-9	-9	
total	78	72	88	83	84	80	71	59	
Art composite TL	-	-10	-12	-16	-21	-26	-32	-	
total	-	62	76	67	63	58	39	-	
A weighting	-25	-15	-8	-3	+0	+1	+1	+1	
A weighted	-	47	68	64	63	59	40	-	
adjusted									
TOTAL (dBA)	-	47	68	69	70	70	70	70	

Table 4.19: dBA sound level in conference room from one chiller using barrier

The dBA levels for two chillers is 73dBA

Floor Systems Effectiveness Comparison with Sound Barrier					
As Designed	Proposed				
25≥73-51=22	25≥73-57=16				
25>22 ACCEPTABLE	25>16 ACCEPTABLE				

Table 4.20:

Acoustical Conclusions:

Since both designs are above the acceptable limits for background sound levels produced from HVAC systems then corrective measures should be taken to reduce these levels. Only direct sound transmission through the floor system was evaluated therefore sound isolation techniques for vibrational transmission should also be considered for final design measures.

According to ASHRAE 1995 Application Handbook 43.9 there is actually little data available to accurately estimate the sound levels associated with chillers, and it is recommended that these levels should be measured in the rooms in which they are installed. To accurately assess the sound levels and the amount of sound absorptive material to apply to the bottom of the decking; as well as other possible measures, it is recommended that sound level measurements be taken at the peak time of year when the chillers are operating.

The primary sound level reduction technique would be to apply a sound barrier material to the underside of composite metal deck. This will change the absorption coefficient within the room and the sound build up level which will initially reduce the overall sound level. It will also change the STC value for the overall constructed system by changing the density of the materials the sound waves are traveling through and will reduce/dissipate the sound energy more effectively.

The particular sound barrier material used for these calculations and the description, application and specifications can be obtained @ http://www.artusaindustries.us/artcomposite foam barrier.html

Other recommended sound isolation techniques related to vibratory transmission would include:

- ♣ Spring/duct isolation hangers for any ducts or pipes coming to or going from the equipment for at least 150x pipe diameter
- Thick ribbed neoprene pad at connection to housekeeping pad
- Flexible duct/pipe connectors located close to equipment
- ♣ Pack any pipe slab penetrations with fibrous material & seal with non-hardening caulking

Better acoustical performance will be realized from the proposed redesign based on the relative masses of the two systems; however both systems will need extra acoustical measures to be able to meet the medical staff conference room background sound level needs from the chillers.

Architectural Redesign of Partial Ground & First Levels:

Relocating the chiller room was investigated from an architectural viewpoint as an alternative to using acoustical treatments in the chiller room. To do this the chiller room was dropped straight down to the ground level and a storage area on the first level was moved to the location of the original chiller location. An additional area of 44'x44' (1936 sq. ft) needs to be excavated for the new space but an area of 32'x22' (704 sq. ft) for the storage area does not have to be excavated.

Acoustical Tre	Acoustical Treatment VS. Architectural Redesign					
Acoustical Considerations	Estimated	Redesign Considerations	Estimated			
	Cost (\$)		Cost (\$)			
Sound Barrier	7,500.00	Excavation of 8400ft ³	1440.00			
Adhesive	450.00	Additional 60' of	25,645.00			
		Foundation Walls (Ground)				
Labor	15,840.00	Additional 44' of 8"	4818.00			
		Reinforced CMU Wall				
		Additional Slab On Grade	9800.00			
		Less 5 Columns @15'	-6263.00			
		Additional 2 sets of double	6000.00			
		doors				
		Additional 30' of interior	1200.00			
		wall for storage area				
		Less 54' of Foundation	-23,528.00			
		Wall (1 st)				
		Mechanical Considerations	3500.00			
		(pipes, ducts, sprinkler)				
TOTAL	23,790.00	TOTAL	22,612.00			

Table 4.21: Alternatives cost comparison

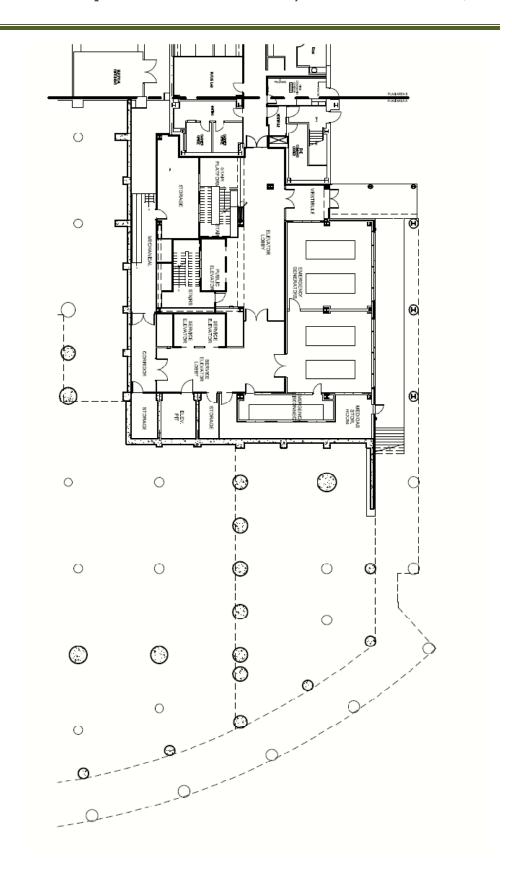


Figure 4.42: Ground level as designed

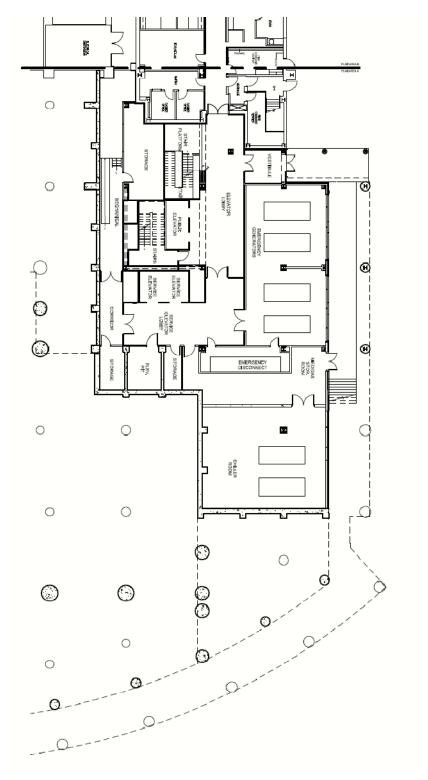


Figure 4.43: Ground level redesigned

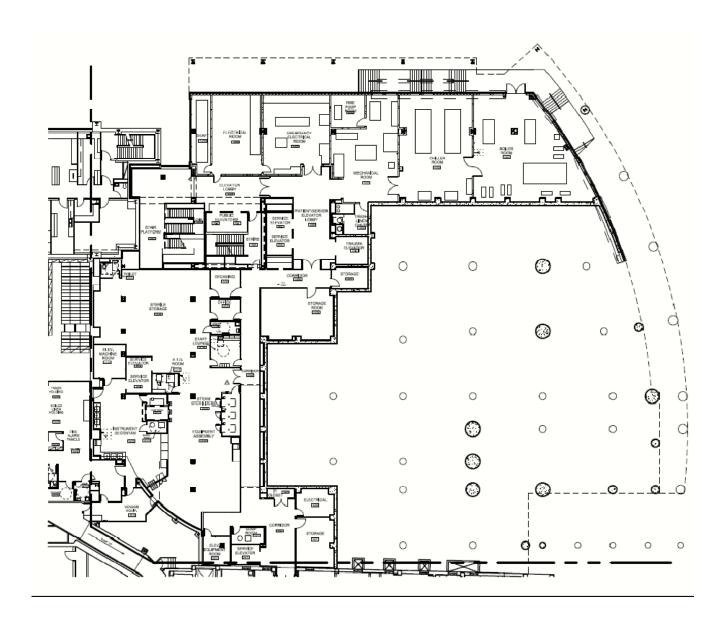


Figure 4.44: Level one as designed

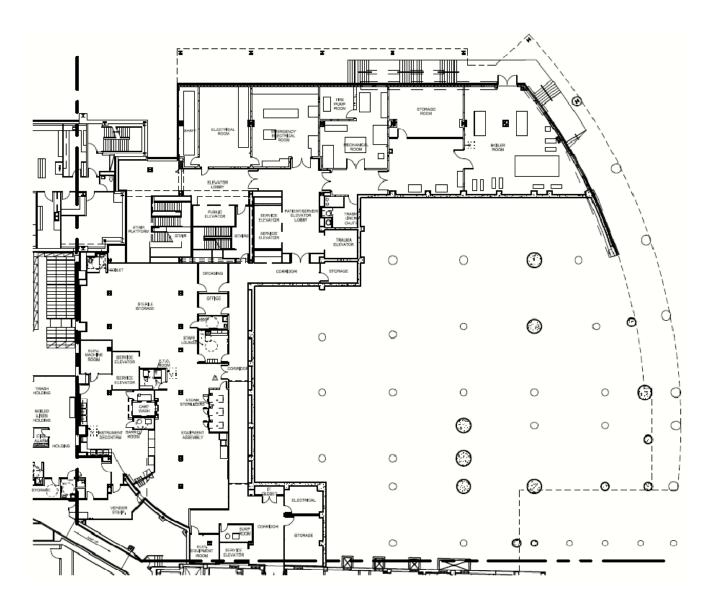


Figure 4.45: Level one redesigned

Proposed System Vibrations Due to Walking:

The proposed floor system was evaluated using PCI Chapter 9.7 (Vibration in Concrete Structures) & an ADAPT Technical Note (TN290_vibrationbs_floor_032109) which refers to ATC, 1999

To determine if the proposed system will be acceptable floor system for hospital operating rooms, the natural frequency as determined in PCI was used to compare against Figure 4 as found in ATC 1999. Figure 4 compares the frequency of the floor system with the peak acceleration as a function the natural frequency in %g.

Equation used: $a/g=P_0 e^{(-0.35*f_n)}/\beta W$

Where Po=assumed weight of an individual walker*0.53

0.53=dynamic load factor for first harmonic of walking force with an assumed walking frequency of 2 Hz. From Figure 1 in ADAPT TN290

=150*0.53=79.5

B=0.05; damping factor, From Table 1 in ADAPT TN290

W=weight of the floor section; actual attached DL = 107.5k

f_n=natural frequency of floor =5.20Hz

 $a = [P_o e^{(-0.35*f_n)}/\beta W]g \le 0.25\%g$

 $a = [79.5 e^{(-0.35*5.2)}/0.05*107.5*1000]g = 0.002396g$

0.002396g=0.2396%g<0.25%g Acceptable

Additional calculations can be found in Appendix L

Construction Cost Comparison:

For a complete and accurate cost and scheduling analysis a take-off of each individual level would have to be done for the structural system and the two systems compared by using both total costs and scheduling implications. However for the scope of this report; a typical area will be analyzed based on the following criteria.

- Total cost of steel for both systems
- ♣ Fabrication costs for both systems
- Licensing fee for proposed system
- Steel detailing
- ♣ Increasing column size for proposed system based on additional weight
- ♣ Number of girders in both systems and their total weight
- ♣ Number of beams in both systems and their total weight
- 4 Shear studs & decking vs. just shear studs for proposed
- **♣** Concrete pours vs. hollow-core slabs
- ♣ Opening, installing rebar & grouting hollow-core planks
- **♣** 2" concrete topping for the proposed system
- ♣ Fireproofing both systems

Figure 4.46: Section of Level #3 used for CM analysis

Cost Con	Cost Comparison of Structural Systems						
As Designed	Estimated Cost (\$)	Proposed	Estimated Cost (\$)				
		Licensing Fee	206,000				
Columns (42 @ 69kips) Labor to install	3500	Columns (42 @ 82.8kips) Labor to install	3500				
Fabrication	411,337	Fabrication	1,319,640				
Girders (37 @ 45.7kips) Labor to install	3500	Girders (37 @ 203.3kips) Labor to install	3500				
Beams (121 @ 102.7kips) Labor to install	10,500	Beams (40 @ 116.2kips) Labor to install	3500				
Connections (336)	252,000	Connections (142)	106,500				
Shear studs & decking (2177) & (22,080ft²)	135,667	Shear studs (175)	347				
Concrete forming & placement 3pours @ 7360ft² ea.	155,142	Hollow-core slab & install	234,048				
		Opening & grouting HCS	44,160				
		2" Concrete topping	34,707				
Fireproofing (200 full members)(Total feet=4649)	19,850	Fireproofing (119 members) (Total feet=2150)	5850				
TOTAL	991,400	TOTAL	1,755,800				
DIFFERENCE 764,40							

Table 4.22: Construction Management Cost Comparison Based on section of Level 3

Total square feet = 22,080

Conclusions:

Based on the cost analysis in Table 4.22 for approximately 1/2 of level 3 it can be seen that even though there are the same number of girders and 2/3 less beams in the proposed system the overall weight of the girders, beams, and columns is almost double the weight of the original design, which directly translates into much higher building costs since steel is purchased mainly by the ton. Assuming the figures from this area are indicative of the entire structure then the assumption could be made that the proposed structural system will be approximately 75% more expensive based only on the above criteria.

Final System Summary & Conclusions:

It was stated at the beginning of the redesigned gravity system that a closer inspection of the advantages and disadvantages would have to be done to evaluate the systems viability. By analyzing the system it was determined that all of the disadvantages listed are correct. It has been shown that large lead times are required with this type of system to be able to coordinate the size of the girders, span and direction of HCP's, and floor penetrations. These elements alone contribute to the systems inflexibility during construction should changes in design or use of space become necessary. This would also make any project of this size and magnitude a design-bid-build type of project, prolonging the completion and delaying the use of the structure. This is not the preferred method of completing a structure in today's building environment where time and opening delays could have cost effects into the millions of dollars.

On the advantages side 5 out of the 11 advantages listed are actually not exactly true for the bay sizes, loading and use of the structure. Starting with the system will reduce the overall weight of the structure; it was proven the overall weight will increase by approximately 25%. Secondly, no intermediate beams in the interior of bays would be needed. Additional beams are needed to frame around larger openings in the floor system. Next it was stated that the system can be installed in any type of weather and trades can begin work underneath almost immediately. While the system may be able to be installed in any type of weather; the grouting of the cores cannot be done in lower temperatures and adverse conditions without additional and possibly costly measures being taken. Without the grouting and setting requirements of the cores being completed; construction materials and equipment cannot be stockpiled or stored on the system because of possible instability issues. This would negate the last two advantages and slow down construction time and scheduling. The first advantage listed as easy and fast to install would not apply when there are multiple and large openings because this would slow down the beam and slab setting process versus larger straighter sections where more square footage can be covered quicker.

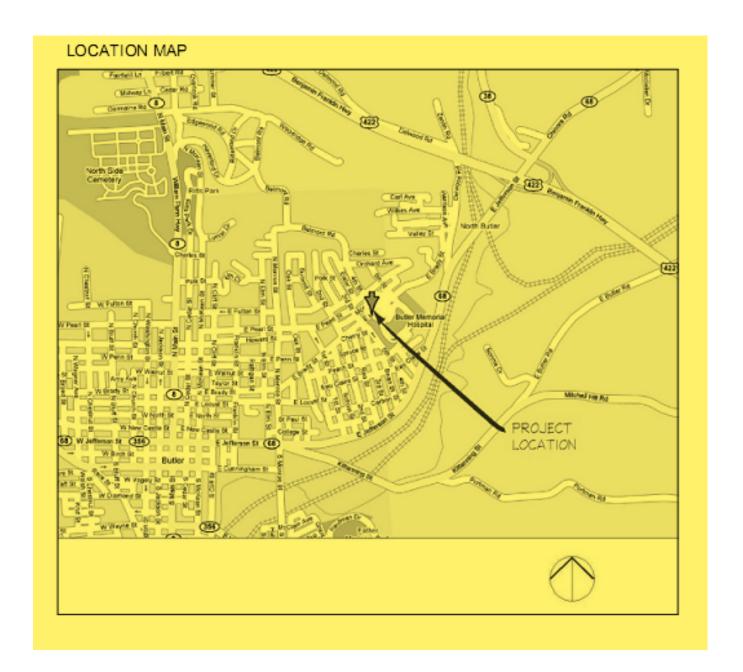
Structural construction cost estimates for a typical section of the structure also shows that the costs of this type of system on this building type would increase somewhere in the range of 50-75%. This would be too large of an increase to justify unless the system would provide additional benefits which other cost effective systems would not be able to provide.

Some of the benefits the system is able to provide over the as designed is better acoustical and vibrational considerations; however these same benefits can be achieved with concrete systems which would be less costly also.

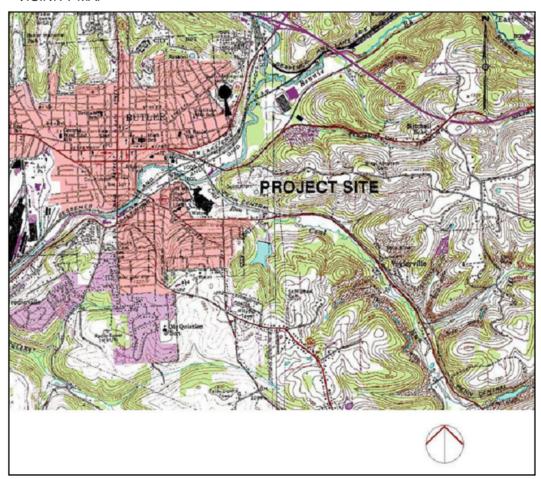
The design size and composite strength capacity of the Girder-slab D-beam shapes are determined by testing methods rather than by analytical engineering calculations. It is estimated that the strength of the D-beams is actually 2-3 times larger than the estimated allowable strength of the shape. With this in mind; the modified proposed shapes may be able to be much smaller than the designed proposed shapes; however, even in the areas where shapes are connected and could have a smaller section, the increased loading required the depth of the section to be deeper to be able to meet the requirements for a shear connection and maintain rotational ductility.

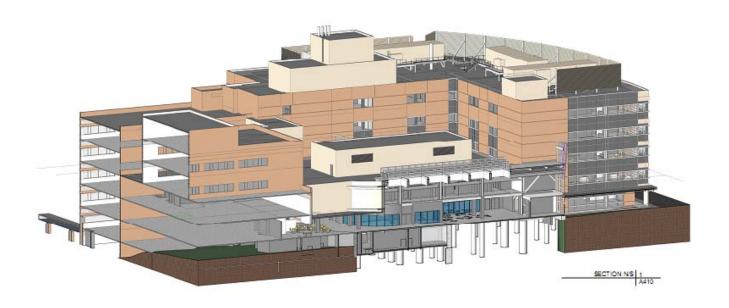
Overall the initial sizes of the modified shapes are dictated by the construction loading (pre-composite action) and the requirements needed for the shear connections; therefore making the depth of the modified designed members non-reducible and all of the above conclusions are still valid.

Although the redesigned proposed systems disadvantages outweigh its advantages for this type of structure, some of the advantages of the system for different building uses could very possibly make it a viable solution. These would include reducing the overall building height without compromising floor space or reducing open unobstructed ceiling cavity areas.


This single advantage would equate to savings in the facade, elevators, MEP runs, column fireproofing, column lengths and sizes, bracing lengths and sizes, foundations, and stair runs. In addition to the material saving provided on the structural system the reduced level heights would also reduce the overall loading on the structure which would possibly reduce member sizes even more. Taking these and possible scheduling advantages into consideration should definitely overcome the cost difference of the structural proposed system making this a good optional alternative to modern conventional practices.

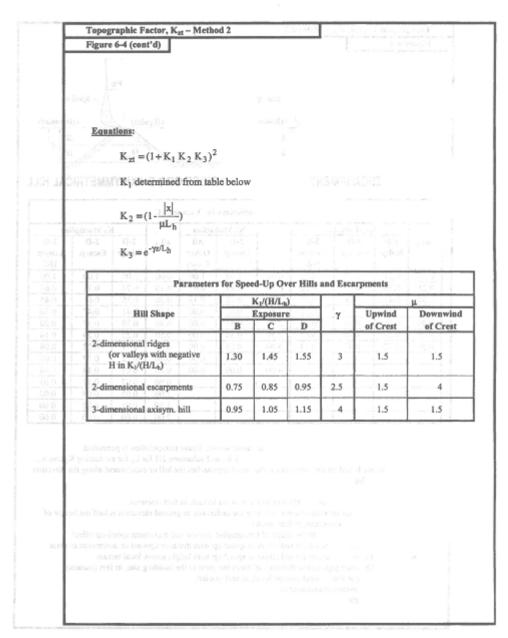
I believe with further research and testing done on this type of expanded system, that some day it will be used in larger span and loading situations, but not in a hospital situation where floor-floor heights are generally large anyway to accommodate all of the additional building system infrastructure needed.


Appendix: A

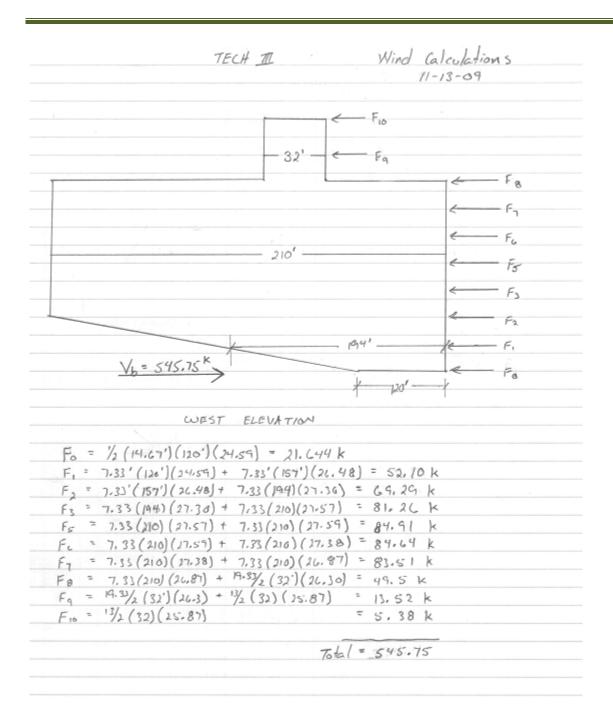


View looking from magnetic north

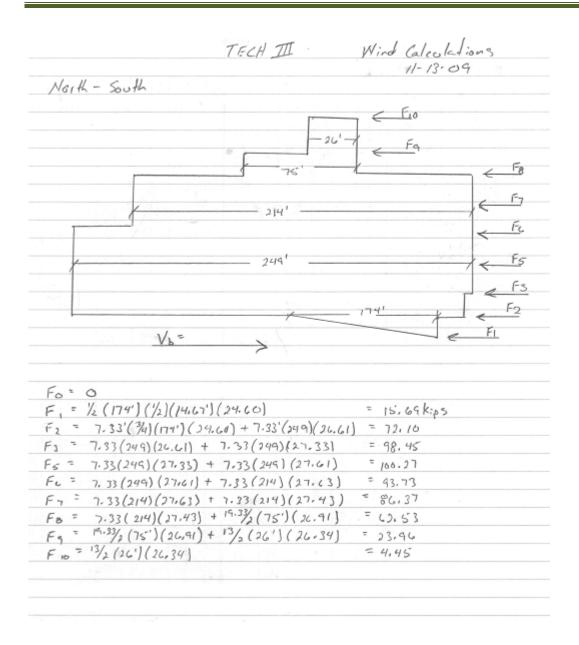
VICINITY MAP



Appendix B: Wind



assessment with the spectral of the cheed age ASCE 7-05


JIM ROTUHNO	TECH II WIND CALCULATIONS 9-26-09
Gust effect Factor:	March Structure
(9 UST CFFFCI / ZEFOT)	Kigio Silvere
6= 000 /1+17.	T 01 T = 1/22/1/6
0.105 11 1199	$I = Q$ $\Rightarrow I_Z = C \left(\frac{33}{\overline{z}}\right)^{1/6}$
1 /T 1.1 gv	75 (5/
	Z=0.6 h = 0.6(12)' = 73.2' >36'=Z
	6 = 0.20 (T-6/2 6-2)
	/33/ \/c
	Iz = 0.2 (33/13.2) 1/c
	6.2(0.876) = 0.1752
	Se =3.4 > 6.5.8.1
	5 = 3.5
	·
	Q= /
	Q= /1+0.63 (B+h) 0.63
	(2)
	B= horizonal dimension normal to wind direction
0	E-W 198'
	11 6 21-1
	$h = 120^{\circ}$ $L = 1 \left(\frac{7}{10}\right)^{\frac{1}{10}} = \frac{7}{2} = \frac{73.2}{73.2}$ $= \frac{500(\frac{73.2}{10})^{1/5}}{1 + 0.63(\frac{798 + 122}{123})^{0.63}} = \frac{73.2}{1.372}$ $= 0.854$
	1-5 1/3 8 37 772
	-cm (73:2)/5 = 1/2 = -11 (-2
	= 744 = 1
/,/	111.5 1= 800
(N-	Swind a Thomas Thomas
	V 1+0.61/198+122 0005 V 1.312
	(744,5)
	= 0.854
(E -	Whaird Q= 7/-
	1+6.63 (210+122 \ 0.63 1 1.3788
	1 (74425)
	= 0,851
(E-W)	
G= 6.925/1+1.7 (3.4) (0.175)	(N-5)
G= B.925 / 1+1.7 (3.4) (0,175)	G= 6.95 (1+1.7(3.4)(0.1752)(6.854)
= 0.856	(1+1.7(3.4/0.1752))
	= 0.857
May divide	0/03 [

(E 7-05 §	C.S.12.2.1 MY	TECH III.			Calcul. 11-13-0	
Velocity pr	rssure (92) elvaluated	@ height	2 1	height	above ground
9	= = 0.00256	Ke Kee Kd	V'I	oril.	(16/81	2)
	Kz vo	wirs Tabl	4 6-3		,	
	Ket 1	varires Figu	11 6-4			
	Kd = 0	3,85				
	Y2 =					
	I = 1					
	Exposure	B CASE	Z		,	
					K2F= ([+ k, k, k,)2
K _z ,	@ 14'-8"	= 0.85	K ₂₆ ,	₹	1.62	from documents
KE 2	29'-4"	6.975	Kee,	5	1.552	9
kz 3	41'-0"	1.86	Kzes	>	1.484	
K25	58'-8"	1.125	Kzt 5	5	1.415	linear introplation
kzi	73'-4"	1.183	Kztc	7	1.347	// // (80)
K 27	88'-0"	1,234	Kzer	2	1,279	
Keg	102'-8"	1,267	Kzt8	Ŧ.	1.217	
Kzq	121'-0"	1.315	Keta	5	1,141	V
kz 10	135'-0"	1.348	Kzejo	÷	1.09	from documents
				}	(= 0.7	5/(H/LL) H/LLS
				k	2= (1-	光h)
				k	3= 6-8	<i>ځ</i> /لړ
					8= 2.5	5 L=4
9- :0.0	0256 (0.85)(1.6	2)(0.85)(902)(1.15	:) = 27.91			
2 0.00	256 (0.975) (1.5	52) (0.85) (902) (1.15	5) = 30,67			
3 = 0.00	256 (1-06) (1.48	4) (6.85) (902) (1.15	5) = 31.88			/
5 = 0,00	256 (1.175) (1.415	(0.85)(903)(1.1	(5) = 30.27			
6 -0.00	256 (1.183) (1.34)	10.85)(902)(1.1	5) = 32.3			
7 = 0.00	256 (1.234) (1.279	10-85) (901) (1.15	5) = 31.99			
8 =0.00	256 (1.267)(1.20)	(0.85) (902) (1.1	(5) = 31.25			
	256 (1.315)(1.441					
	256 (1.348)(1.09	1/4 0-1/22/11.	1 = 16 70			

TECH III	Wind Calculations
	11-13-09
P= 22.6 Cp - 2. (6Cp.) 16/8/2	
= 2: = 30.41	
G=0,856 (GCpi)=	± 0.18
Cp = 0.8	
•	
P (East - west) windward side	
P, = 27.91 (0.856) (0.8) - 30.41 (-0.18) = 24.59	16/1/2
2 = 30.67 (0.856)(6.8) - 36.41(-6.18) = 26.48	
3 = 31.88 (0.856)(6.8) + 5.474 = 27,30	
5 = 32.27 (6.856) (6.8) +5.474 = 27.57	
6 = 32.3 (0,856) (O18) +5.474 = 27.59	
7 = 31.99 (0.856)(0.8) +5.474 = 27.38	
8 = 31.25 (0.856)(0.8) +5.474 = 26.87	
9 = 30.41 (0.856) (6.8) +5.474 = 26.30	
10 = 29.78 (0.856) (0.8) +5.474 - 25.87	
1	
Lecuard Side	C 11/112
P- 36.41 (0.856) (0.8) - 36.41 (6.18) = 15.3	5 /6/ 14
	135-411
100/14/94	122'-6"
15:35 14 Pt2	9 4 44
	8 //01:-8"
*	88'-0"
	73'-4"
	58'-8"
	3 44'-6"
	74 -8
	291-911
	(1) 141-8"
	14.8
	0'0"

			lculations	
North - South				
Same Kp. Kzt.	kd V' II as Eas	- Wrst		
9. = 30.41				
(GCp;) = -0.18				
G = 0,857				
92i is the sa.	me as E-W			
Pi · 8== (6,867)(6.8)-	30,41 (-0.18)			
P, = 27.91 (0.6856) +	5.4738 = 24.60 16/812			
P2 = 30.67 (0.6856)	+ 8,4738 = 16.61	101		
P3 = 21-88	= 27.33			
Ps = 32.27	= 27-61			
Pe = 31.3	= 27.63			
P= 31.0	= 27.43			
P& = 31-15	= 26.91			
Pg = 30.41	= 26.34			
P16 = 29,78 V	= 25,96			
Lours	Side			
P = 30.41 (0.857)	(0.8) - 36,41(+0,18) = 18.	.8 13/ft 2		
		K 10	K /	9 /35-
15.885	-26'-	2 6 3 1		9 122-0
	1 10			
	75"			8 101-1
	1 /> 1			102
				700
	214'			700
			-	7 80'-
			*	7 80'-
	214'		<	7 80'-
			*	7 88'-1 6 73'-4 5 58'-8
	214'			7 88'-1 6 73'-4 5 58'-8
	214'	174"		7 88'-1 6 73'-4 5 58'-8
	214'	174'		7 88'-0 6 73'-4 5 58'-8 3 44'-0 2 24'-4
	214'	174'		5 58'-8 3 44'-8 14'-8
	214'	LEVEL BESON		5 58'-8 3 44'-6 2 34'-4

Appendix C: Snow

JIM ROTUNNO	TECH I + III	SNOW LOAD
		CALCULATIONS
USING ASCE 7-0	OS CHAPTER 7	
Flat 100f snow	load (Pa)	
Pf = 0.7 Ce		
P => Buller, P)	1 Figure 7-1 = ground snow	load
Ce = Table = 1.0	7-2 trirain catropry C 10	of partially exposed
Ct > Table 7	-3	
=1.0 T = Table 7	-4 Catagory IV	
= 1.2)0.7	
Pp = 0.7 (1.0)(12	5) (1.2)(25) = 21 psf	
7.3 where p	exceeds 20 13/84'	
P	= 20I = 24 psf not 21 psf	
	The house with	

Appendix D: Seismic calculations

JIM ROTUNNO	TECH I +IL	SEISMIC ANALYSIS
Occupancy Category	77	
Determine the design Sps = 3/3 Sms	spretral response	acceleration
	Fa = site coefficir	
	Site (lass C 18, = 12 S, = 9	0.046 7 0.0055
	Fa = 1.2	
Sps = 62 (0.12) =		
Sps = 3/3 Sps =	2/3 (0.144) = 6,096	
S _{D1} = 2/3 S _{M1} →	Sm1 = Fu S, = 1.7 (0.046) =	0.6782
50. = 3/6.0782)=	0.0521	
/ Importance Factor	or 1.5	
SDC > Srismic c	disign catingory =	A => secupency IV Sps < 6.167
	F	rum Table 11.6,2
(1.00 to 1.00		Soi 6.067 : A
Calculate the seismic	hast shows	
V = CsW	W= Tale I dead	I load for stimil load determination
Cs = Srism;	c Responer coefficien	+ ASCE (7-05 \$12.8.1
= 5ps/	K/I 325 = 0 = 1112	and 5 50/7(8/2) for T 5 TL
0,0 7	C/ //.s 0,0443 a	T: Ta = Ce h a rg. 12.8.7
		7, = 811.4.5 Fig 22-15
	_	= 12
	So. /=	= 12 = 6.02 (135 ft) 0.75 = 0.792866 (1/2) = 6.0782/0.792 (37/1.5)
	Ce	(20.0456)
	and the second	A MARINE

	JIM ROTUNNO	TECH TI	SEISMIC ANALYSIS
	Effective seismic	weight Wo as defined	12.7.2
		for storage arras	
	2) partitions - m	inimum of 15 psf	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1) total operative	weight of parmanent equ	ipment use 10ps f use 20% pg < 30 i. Not aquired
Mag.	plus the tot	al Dead load	632 00/0 pg - 30 11/101 lagsilo
	-vidit /		
51 psf	weight of coner	etr slab + metal drok .5 + 3/2) + 3psf = 50.9	concrete 31/2" I mell 3" 1
	115 pet (3	$\frac{.5 + \sqrt{2}}{12"} + \frac{3}{3} p s + \frac{5}{2} = 50.7$	2 15/ft use 51 psf
	1.0.	1	A .
- 0	Superimposed 1	Drad Loads > MEP, parlit	ions, finishes
aspsf	USe 2	Spsf	
289.16 Kip	s columns from	column schrolule (tabu	lated using excel)
	beams (see	next page)	j.
1. Opst	operating arigh	t of premanent equipment -	1.0 pst of tolet building area
4/2psf	soot - concuts	drck, insolation, EDPM - 42	os f
· Apri	building squa	ir footage from construction	n documents
	L1 = 20 40	15 %, Pl	
	L, = 45 5	45 %. Pt	
	L3 = 42 16		
	L5 = 3152		
	LG = 27 7;		
	1 = 27 70	0 84.01	
	Rost + Lo = 460	00	
	P. M. Park	379 - 480 THE TOTAL STREET	
	Exterior wall	weight => brick veneer	12016/813
	12016	3.25 1 - 32,5 16/112	
	Ets (3.25" = 32,5 16/8+2	
0	Storg height	14'-8"	,
	2,3		

	Level by Level wright analysis (Example) concrete MEP Equip. Columns brans brick boo W, = 51(20 405) + 25(20 405) +10(20 405) + 158.39 + 141.84 + 4.86
	conciete MEP Equip. columns brans brick Eco
	W, = 51 (20 405) + 25 (20 465) +1,0 (20 405) + 58.39 + 141.84 + 4.86
	= 1772,4 k
	extrior wells are estimated @ 20% glass & 80% brick
	average roctain well wrighs 12.5-15816/Ft2 use 15psf
	0,20 (15)(sq. ft. of well pr floor) + 0.80 (32,5) (sq ft. of ext. well pre floor) =
	B of exterior wall per level & divide this by the level & square Rootage
	to get a 16/5. It per level then add into excel spreadshort
	0.20(15) + 0.80(32) = 28.6 16/ft of extreior wall
	0,00(10) 000(30) 1000 10/17 01 (21)
	Beams
	i would all began a so cook Class land is held by
1	17 0 - 1 1 by D - 1 1 1 1 1
	taking (J) Spot and of auckage ways and calculating the
	weight of brams @ each floor lovel is debulated by taking (3) spot droks of average bays and calculating the 3/0 stral per floor area and superimposing it to all floors
	pot about 1:0 level 3
	spot drek 1: @ level 3 Typical bag = 30' x 28' = 840 ag. ft only I girdry pro bag
4	19 / 10 × 40 - 30' 1 21×50-28' = breause thing are shared 4(40)(30) + 1(50)(28) = 6200/5 between boys
	4(40)(30) + 1(50)(28) = 6200/5 between boys
	62046/840 sq. Pt = 7.38 13/ft2
	그 과저 그림 아이들은 그 사용된 그 작으로 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	2: Typical bay leve (2 30'x30' = 900 sq. f)
	4-16426 2-24855
	4(26)(30) + 1/65)(30) = 4770
	477.0 /960 = 5.3 16/4+
	3. Typical bay level 5 30×18 = 840sq. ft 5-18×40-30' 1-24×62-28'
	- 19 x40 - 30' 1-24 x61 - 28'
	5(40/30) + 1(W)(28) = 773616
	773616/840 = 9.2/6/842
17	1120181 610 111 /6/11
	(7.38+5.3+9.2)/3 = 7.3 average
	USE 7.016/ft2
	7 2 16 1916

JIM	ROTUNNO	TECH I +I	SEISMIC CALCULATIONS
	Distributing the total	I base shear to ino	ividual levels
	The conf saw	ace footage needs	to be divide up
	hetween leve	ks,5,7, +8	
	3 = 45 545	-31525 = 14020	14020/45545 = 31%
		- 27760 = 3765	3765/45545 = 8%
		5 - 2000 = 25700	15700/45845 = 56%
		- 14020 - 3765 - 2570	
		7,10,20 3.03 73.1	7000/11013 170
	Firm excel take the	Plane wright totals	(summed across) and add
	the % of mat	weight to levels 3 s	+ 7 to art total
	floor level a		
	1= 1772.4k		
	2= 3876.4 K		10000
	3= 3010,94	0.31(1913) = 4203.93	
		6.08(1913) = 2842.94	
1114	6=2368.04		
		6.56(1913) = 3432.98	
	8= 0.5(1913)		
			18CTS. 1 Kips
	USE THESE	LEVEL weights to	estimate the % of
	Total Base SI	LEVEL weights to hear that acts at ea	ch level.
	124		
	1=> 1772.4/2	16/6.5 = 7.84% = 0.0	5784 (851.58) = 66.76 k
		1616.5 = 17.14% 7 0.171	
		2616.5 = 18.59% = 0.18:	
		616.5 = 12.57% = 0.12	
		16K.S = 10.47% = 0.10	
			518 (851.58) =129.27 k
	8= 95.65/2	1616.5 = 0.423% 70.	00413 (857-58) = 3, C K

		Colum	n Load	Samu	nary									
W Shapes	weight							Levels						
14.667	lbs													
			1		2		3		5		6		7	
8±40	40	1	0.587	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	
12=40	40	1	0.587	2	1.173	2	1.173	2	1.173	1	0.587	0	0.000	
12:45	45	0	0.000	2	1.320	2	1.320	0	0.000	0	0.000	0	0.000	
12=50	50	1	0.733	2	1.467	2	1.467	1	0.733	1	0.733	0	0.000	
12=53	53	3	2332	3	2.332	3	2.332	0	0.000	0	0.000	0	0.000	
12:58	58	0	0.000	0	0.000	0	0.000	2	1.701	2	1.701	0	0.000	
12:65	65	2	1.907	1	0.953	1	0.953	0	0.000	0	0.000	0	0.000	
12±72	72	1	1.056	1	1.056	1	1.056	0	0.000	0	0.000	0	0.000	
12:87	87	0	0.000	1	1.276	1	1.276	0	0.000	0	0.000	0	0.000	
12x96	96	2	2.816	1	1.408	1	1.408	0	0.000	0	0.000	0	0.000	
14:43	43	O.	0.000	0	0.000	0	0.000	1	0.631	0	0.000	9	5.676	
14x48	48	0	0.000	0	0.000	0	0.000	3	2.112	4	2.816	11	7.744	
14:53	53	0	0.000	0	0.000	0	0.000	3	2.332	4	3.109	5	3.887	
14=61	61	2	1.789	0	0.000	3	2.684	17	15.210	17	15.210	8	7.157	
14x68	66	2	1.995	0	0.000	2	1.995	10	9.974	9	8.976	3	2.992	
14=74	74	4	4341	0	0.000	4	4.341	1	1.085	1	1.065	0	0.000	
14:62	82	7	8.419	0	0.000	9	10.824	0	0.000	0	0.000	2	2.405	
14:90	90	7	9.240	18	23.761	18	29.761	4	5.280	4	5.280	0	0.000	
14x99	99	0	0.000	1	1.452	1	1.452	0	0.000	0	0.000	0	0.000	
14x109	109	4	6.395	9	14.388	7	11.191	1	1_599	0	0.000	0	0.000	
14x120	120	3	5.280	0	0.000	1	1.760	0	0.000	0	0.000	0	0.000	
14=132	192	2	3.872	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	
14=145	145	1	2.127	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	
14x159	159	1	2.332	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	
14x176	176	1	2.581	0	0.000	0	0.000	0	0.000	0	0.000		0.000	
			58.389	Mas	50.586	kine	68.994	kins	41.890	Line	39.498	Mar	29.862	Line
		Total	column w	olekt-	289,160	Mar								

Appendix E: Frame Stiffness and Load Distribution Calculations

Livei	TECH II	JIM ROTUNNO
Area and Center of M	ass Calculation	11-14-09
9 . x = & ? (A;) / & A;		
9 = 96'+18' + 50' = 59'	X = 7/2 = 38.	Ś
Aia = (50')(77') = 3850	A1a = 77(60)	
7,6 = 29.75' A,6 = 7.333'(8.5') = 62,734	\$ 1/6 = 33,67+11.3	3+8+16.67+ 7.33/ = 73,335'
	X1c = 33.67+11.3	3 + % = 49'
410 - 29.75'		
A, = 8'(8.5') = 68	X9 = 3370 X =	16.835'
9,d = 25'	X1e = 45+ 33/2	= G1'
A,d = 18'(33.67') = 686.66		
	X18 = 45/2 = 2:	l.5"
91e = 12.75'		
M.e = (3)(26:51) = 816	X2 = 77+ 1/2	- 83'
9,4 = 2'	X3 = 77+12+	½ = 95"
A14 = 16'(45') = 720		
	94 = 77+12+"	% = 93.5°
P2 = 9+30 = 39'		
A2 - 12'(60) = 720	Y5 = 77+12 -12	1/2 = 99.5'
9 3 = 9+10+19+1/2= 46.5	x = 86'- 1/2 =	81.5'
A = 12(17) = 204		
	X = 349957,28	94 - 46.92'
94 = 9+10+19/2 = 28.5	7458,399	4 - 76,12
A4 = 9(19) =171		
45= 9+1%= 14	CENTER OF	MISS
As = 10(16) = 160	(46,92', 41.	
96 = 4.5'	74	
Ac = 9(9)=81	×	
5 4/2-		
9 = 367386.937 = 41.21'		
1408021		

CENTER OF MASS CALL, TECH III	LEYEL 2
	Crimer
9, = 11,5+ 12+12,5'+ /2 H81' = 52'	X = -69-10 = -79' X = -69' = -34.5'
A, ~ 1/3(48)(30) = 720	x = -6% = -34.5'
92 = 11.5 +12 + 12.5 + 4 1/2 = 60'	V1 = 75/2 = 37,5'
A2 = 48(G4) = 3312	X4 = 75+ 12/2 81'
73 = 92 = 60'	xs = 75 + 12 = 87'
A3 = 75(48) = 3600	Xu = 15+17+11+8+ 1 = 60'
94 = 84-15-1/2 = 62'	xy = 75+24-3-1/4 = 90'
A4 = 12(14) = 168	XB = 75+24-3-((12+16,67)/s)= 81.67"
95 = 84-29 - 1/2 = 46.5'	xq = 75+24+5-4 =100'
As = 17(24) = 408	Vio = 89+4+ 1/2 = 110.5'
9c = 84-48- 3 = 34.5'	V11 = 15+17+11+8+1 1/2= 60'
Ac = 3(18) = 54	¥12 = 16+17+11+4 = 47'
47 = 84-48-13.6% = 29.167'	X10 = 15+17+1/2 = 37.5'
A, " 164	XH = 15+17+1/+8+ 5/ = 53.5"
98 = (84-29-36.67)/2 = 13.167'	Vis = 15+1/2 = 23.5'
A 8 = (0.167/2)(28.67) = 349,79	X16 = 15/2 = 7.5"
9 = (16+3)/2 = 9.51	V.7 = 15/2 = 7.5'
Ag = 19(8) = 152	
9,0 = 8'	
A10 = 13(16) = 208	X " 145421.5993 = 13.53'
Fil = 11.5/2 = 5.76'	10744.29
An = 11.5(18) = 207	
9,2 = 11.5+ 34.5/2 = 23.75°	
A,2 = 8 (24,5) = 196	
913 = 5.75'	
A13 = 11.5(8+11) = 218,5	
7,4 = 11.5.3/2 - 13'	
AH = 5(3) = 15	
915 = 36/3 . 18'	
Ais = 17(36) = 612	
VIL = 11.5+12 + 12.5/2 = 29.76	
A16 = 12.5(15') = 187.5	
9,7 = 5,75' -	
A.7 11.5'(15) : 171.5	
9 = 526446,9079 = 48.44"	
10744,29	

77		T
9, = 52'	A, =720	X, = -79'
92 = 600	A2 = 1200	X2 = -44'-126'= -56.5'
43° 60'	A3 - 7440	X3 = 120/2 - 44 = 16'
Py = 7'	Ay = 359.304	Xy = 60+16+25.67 = 88.83'
	As- 261.332	R's = 89,33'
96 = 1.5	Ac = 36	X 6 = 84.33+10.67 + 7.5+6 = 108.16
97 = 3' 98 = 34.5'	A7 = 22.5	x7 = 108.16-6-7'5/2 = 98.413'
	A8 = 54	Xe = 60'
49 = 1.5'	Ag = 13.5	X 9 = (2,5'
910 - 27.125'	A10 = 13.5	X10 = 51'
F" = 23.75'	A ,, = 207	X ,, = 23.75'
F12 = 18'	A12 = 4/6,5	X4 = 23.75'
F13 = 34.5'	A12 = 20	X ₁₂ = 3.33 '
914 = 28,25'	Apg = 112.78	X11 = 5:833'
415 = 5.75	A15 = 168.67	X ₁₅ = 7.33'
916 = (33.5/2)-11.5 = -5.25	A16 = 3350	X16 = 64.67'
9,7 = -22-15.67/529.83'	A 17 = 172,33	X17 = 114.67 - "/2 = 109.17"
F16 = -29,83'	A,8 = 757.22	x10 = 61.17'
9,9 = -60,08'	A19 = 3/53.28	X19 79.5'
900 = - 89.17'	A20 = 200	X20 = 81.33'
9 -1 = - 92.5'	121 = 606.67	V21 = 5'9.5'
902 = - 110'	A21 = 225	X 22 = 63.83'
923 = - 100'	A23 = 1038,33	X23 = 29.5'
	20 597.936	
ñ	,	
	7.15	
26 547.936		
X = 707090,7863	34.41	
20647-936		

LEYEL 345	TECHTIL	11-14-09
CENTER OF MASS CALCULATION	N Gubtracting void	s from Arras)
9, =[22080(92') - 71.5(34)],	A, = (158+24) 120 - Yolds	X, \$\(270.80(40') -75(52)
	= 22080 - 1016	- 1/1.5(34) - 14.5(39)
- 71.5 (220) - 71.5 (312) /A,	= 21.064	- 35 (220) - 66 (312)
= 93./36'	7,047	= 60.90'
9/2 = 214'	A, = 1560	x, = 83.67'
43 = 214"	A3 = 288	X3= 136.67'
94 = 183(4500) - 162(144)/A4	Ay= 50/96) - voids	X4 = 165 (4500) - 128 (144)
800172/4356 = 183.7'	=4600 - 144 = 4354	= 170.45
95 = (158/2)(30 ×158) - 45'(32')/A5	A = 30/158 \ - 2/16 }	X < = (135"(4746) = 122(16)
79. 23'	= 4708	- 148(16)) / 4708 = 135
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4. = \ios(1/2 x 60 x 158) - 151(52)) Ac + 4740	X = (170 (47 40) - 152 (62)
FIST(52) - IST(117) - 18N(40)	7	- 178(52) - 195(117)
-151(52) - 151(11) - 130(40) -96(52) - 51.5(15)	4.	- 155.5 (40) - 156 (52) - 1418
= 96,05'	40	± 158,06'
7,0,7 = 3		- 150,00
97 = 454 1/25 52	A7 = 359.324	X7 = -12.833'
77	717 35 113-7	27 .2.0.0
90 = 48+14+11 = 70'	Ag - 498.66	x = -11.333'
78 79 77	7.8	7 g
99 = 133,25 (3349) = 136.25 (170.5)/A.	Ag = 3349 - 1705	Xg = -17(5349) - (-2).5)(170.5
= /53.09'	= 3/78,5	= -14.71'
7-15 A 11A	5-45.4	// *
9 = 2 9; A; /2 A;	X = & X. A.	/ 3/AJ
= 4462 395.357	= 351657	13.106
40752,484	40752	484
= 109.5'	0.001	
75	= 86.29'	

LEVEL 6 TO	ECHII	11-14-09
CENTER OF MISS CHICULATION		
9, = (22080(92') - 71.5(316)	A, = 22080 - Voids	X, =[60(22080) -75(52)-112.5(5)
- 71.5(220) - 71.5(312) - 36.5/52)	22080-396-220	-145(396)-35(220)-66(312)
- 36(36) - 10(120)(6)	- 312 - 52 - 36	-2(2)6 - 2(8)6 - 2(2)6
- 3(M2)(G) - 10(149)(G))/A,	-23(243) = 20926	- 2(27)(4) - 32(4) - 37(4)
= 93,44'		- 42(6) - 5'2(6) -2(65)6
		- 2(68)6 - 3(83)6 - 94(6)]/A,
		= 61.05'
1000		
9, = 170(2508) - 174(16×88)/A,	A, = 1184	X, = 75'(2568) - 75(16480)/A
~ 1018'		= 73.5'
43 = 170'	As = 540	X3 = 131.25'
94 = 79.23'	A4 = 4708	X4 = 135'
95 = (118(3480) - 151(52) -151(52)	A = 3480-52-52	x5- = (180(3480) - 152(52)-178(52)
- 130 (40) - 15/(234) - 90(52)	- 40 - 234	- 205(234) -155.5(40)/Ac
- 81.5(15))/As = H2.35'	= 3/02	=178.37'
96 = 106.67'	A, = 560	X4 = 200'
97 = (88(2240) - 90(52)	Az = 2240 - 52-15	X7 = (170'(2240) - 155.5(40)
- 77 (IS))/An	= 2173	- 157.5(15)]/A,
= 88,03'		= 171.33'
V = 50'	Ae = 1200	Xa = 26.67'
97 = 52'	Ag = 359.324	Xg = -12.833
4,0 = 70'	A10 = 498.66	x, = -//-333
9,1 = 133.25'	A 11 = 3349	$\bar{x}_{10} = -1/.335$ $\bar{x}_{11} = -1/7$
	38599.984	
Ū = 2771496 016		V - 2072 413 ///
9 = 377/090.868		X = 3673 423.611
38599.984		38599.984
= 97.7'		= 79.62'
	79 1 1 1 1	

LEVEL 79-8 CENTER OF MASS (ALCOLATION	TECH III	11-14-09
9, = (44'(10500) - 71,5(396) - 71.5(220) - 71.5 (312) - 36.5(52) - 36(36))/A, = 41.397'	A, = 10560 = 3 -226-312-5 = 9544	
7, = 79.23'	A, = 4708	Xg = 135"
93 = 112.36'	Az = 3102	√3 = 178.37'
94 = 88.03'	Ay = 2173	Xy = 171.33'
95 = 106,67'	A5 560	√s = 200'
96 = 50'	A = 1200	¥6 = 26.67'
97 = 52'	Az = 359.324	X7 = -12.833'
Ÿ⊕ = 70'	A8 = 498.66	X̄ = -//, 333'
Pg = 184'	Ag = 874	xg = 21'
F10 = 122'	A,0 = 164 23122,984	X10 = -34,33'
9 = 1584816.946 23122984		X F 2556 953.557 23/22.984
= 68.54'		= //6/32'
Ph = 136.25		Xb= 48'

LEVEL 9	TECH TIT	11-14-09
ENTER OF MASS Colculations		
9, = (44'(10560) - 36.5'(50)	A,= 10560-52	X, = (60(10560) - 75(52)
-36(36) - 54(2100)) A,	-36 - 2100	- 113,5(36) - 37,5(2160))/
-36(36) - 54(2100)) A, =41.578'	- 8372	- 117.5(36) - 37.5(2160)), = 65.32'
9, = 79.23'	A, = 4708	x2 = 135"
9, = (118(348) - 151(52)-151(52)	A3 = 3480-52-52	X, = (180(3480) - 130(52)
- 90(52) - 136(6) - 145(8)/Az	-52-6-8	-151(52) -151(52) -136(6)
= 117.31	= 3310	-/68(8))/A3 = /81.8
94 = 88.03'	Ay= 2173	Xy= 171.33'
95 = 106,67'	As = 560	X5 = 200'
9 = 50'	Ac= 1200	Xc = 26.67'
47 = 52'	A 7 = 359,324	F7 = -12.833'
9 ₈ = 74'	Ag = 634.66 21316,984	Xa = -1/.333'
9 = 1486034.174	₹ =	22886 97. 323
21314.984	^	21316,984
2.5.6.767		213101101
= 69.71'	-	/67, 365 ′
LEVEL 10 9, = 38,167'	V = 49,25	
9, = (74(2100) - 72(8.75)	A, = 2100 - 8.75	X, = (37.5(2100) - 4(8.75)
- 70(88) - 63(25)		- 15(171) - 36 (25)
- 2(72)(c) -70(6) /A	* /7/	-365(88) - 63(6)(1)
-78,5((71))/A2 = 73.71'	= 1795.25	- 72(6))/A2
= 73.71'		=39,465'

ENTER OF RIGIDITY	
Direct or production	
K = AE/L organism mule hear	8 der parlicipatina
K = AE/L assuming only brace K, 7 HSS 87878 => A = 16.41n2 L=	25-1.75-"
= 10.4(29000)/251.76	
1198;01 k/in	
11 10,017178	
k2 = k1	
k3 => HSS 10×10 × 5/8 > A= 21.0 in 2 1=2	51.75"
= 21/29600)/251.75	_
= 2419,056 klin	
7-777	
Ky \$ HSS 10×10×3/8 A= 13.2in1 L=	243,31"
= /3.2(29000)/243.31	
1573, 3 K/in	
5-1	
Ks => HSS 10×10×1/2 A= 17-2; L=2	243.31"
= 17.2(29000)/243.31	
= 2050.06 k/in	
kc => HSS /0×10×1/2 A-17.2in2 L=	235.184"
=17.2(29000)/235.184	
= 2120.89 K/in	
X = Ekic Xi	9 Ekix Yi
X = 2 king Xi	& Kix
7	
X = ky (30')+ks (150')+kc (100')	9 = k, (88') + k, (30) + k, (184')
ky+ks+kc	k, +k2 +k3
= 1573,3(30') + 2050-06(150) + 2120.89(120')	
15.73.3 + 205000 + 2120.89	1198(2) + 2419,066
- 106-06	- 121.8

AT LEVEL 5 TECH THE CENTER OF SIGIDITY	11-15-09
Assuming, loading propendicular to	frame direction (strong exis)
K= AE/L S= PL/AE	
	daet!
K, + HSS 8x8x3/8 -> A=16.4 L=25	14.8"
K, = 10.4(29000)/251.75	2= 44, 36°
= 1198.01 k/in	11.75" 14'-8" L= 70.98' = 251.75"
K ₂ = k ₁	
K3 => 1455 10×10×3/8 > A= 13.2:	L= 251.75"
7 13.2(29000)/251.75	
= 1520,556 k/in	
Ky > HSS 10×10×3/2 + A = 13.2 12	= 243.31"
= 13,2(29000) / 243,31	
= 1573.3 k/in	
K5 7 HSSONIOX1/2 + A= 17.2; 2	= 243.31"
= 17.2 (29000) /243.31	
2050,06 k/in	
KG => HSS10×10×1/2 => A = 17.2: 2	L= 235.184"
17.2(29000)/235, 184	
2120.89 K/in	
X = Sikiy Xi 9 = Sikix 4.	
X = Sikiy Xi	
X = Ky (30') + ks(150') + ke (130')	9 = k,(88') + k, (36') + k, (184')
ky+ks+kc	k, +k2 + K3
= 1573,3(30) + 2050,06(150) + 2170.89(126)	= 1198,01(88) + 1198(30) + 1520,556(184)
1573.3+2050.06 +2120.89	2(1198.01) + 1520.556
= 106,86	× 107.53'

AT LEVEL CO CENTER of RIGIDITY	TECH III	11-15-09
K, \$ 1455 8 × 8 × 5/6 = 8.76 (29000)/251 = 1009,10 klin		L= 251,75"
k2 => 1455 8×8×3/8 =10.4(29000)/251.5 =1198.01 Klin		2 = 251.75"
K3 = K2 - 1198.01 k/		
Ky + HSS 8 x 8 x 3/8 = 10.4 (29000) / 243. = 1239.57 k/in	A = 10,4 in 2	L = 243,31"
K5 => H55 16 x10 x3/8 = 13.2 (29000)/243 = 1573,3 K/in		L= 243.31"
Ke = HSS 10x10x3/8 = 13,2(29000) / 2 = 1627,66 k/in		L = 235: 184"
X = ky (30') + ks(15) ky + ks- + ko		9 = k, (88') + k, (30') + k3 (184') k, +k, k3
= 1239,57(30) + 157 1239,57 + 1573,3		- 1009,1(88) + 1198,01(30) + 1198,01(184) 1009,1 + 2(1198.01)
= 105.51'		= 101,37'
)		

Page 91

AT LEVEL 7 48 CENTER of RIGIDITY	TECH III	//-15'-09
K, => HSS 8 × 8 × 5/6 = 876 (29000) / 251.75 = 1009. 1 Klin	A = 8.76 in 2	L= 251.75"
K2= K, = K3		
Ky => HSS 8 x 8 x 5/10 A = 8.76(29000)/243.31 = 1044.1 k/in	5 8.76 in2	L = 243,31"
Ks = HSS 8×8×7/8 1. = 10.4(29000) / 243.31 = 1239.571 K/in	1 = 10.4 in 2	L= 243-31"
Kc = HSS 878 Y5/16 = 8.76(29000)/2355-184 = 1080,176 k/in	4 = 9.70 ; n ²	L = 235./84"
X = ky(30') + ks(150') +	kc(120')	9 = K1(88) + k2(30')+ K3(184') K1+ K2 + K3
1044.1(30) + 1239.571(15		= 1009,1(88) + 1009,1(30) + 1009.1(184) 3(1009-1)
= 103.12'		= 100,67'
<u></u>		

Jim Rotunno - Final Report

DIRECT FORCE INTO TE	CH III	11-17-09
EACH FRAME		
ON LEVEL 3		
0 = 60.45 k T.11, 25	D = 81	ack Table 3.3
1 = 10-15 K 1231 315		1 +k5 +k6
B = 98.45 k Table 3.5 2, kg = k, +k, +k, = 1198.01+1198.01+1419.066	2 Ky - K	13,3+2050,06+2120,89
= 48/5,086		144,25
- 1815,000	3	177146
F, = k, Py = 1/98.01 (98.45)	= 24.495 k	
F2 = F1 = 24.495 k		
F3 = K3 P5 = 2419,066 (98.45 SK4 4815.086	- 49,461 K	
Fy = ky Px = 1573.3(81.20)) - 22.256 k	٤
3 KX 3111125		
Fr & K = Px 2000,01. (81.	26) 25.0 k	
Fs * Ks Px = 2050.06(81-		
FL = KL Py = 2120.89(81.	26) = 30.0k	
3 kx 5744,25	-	

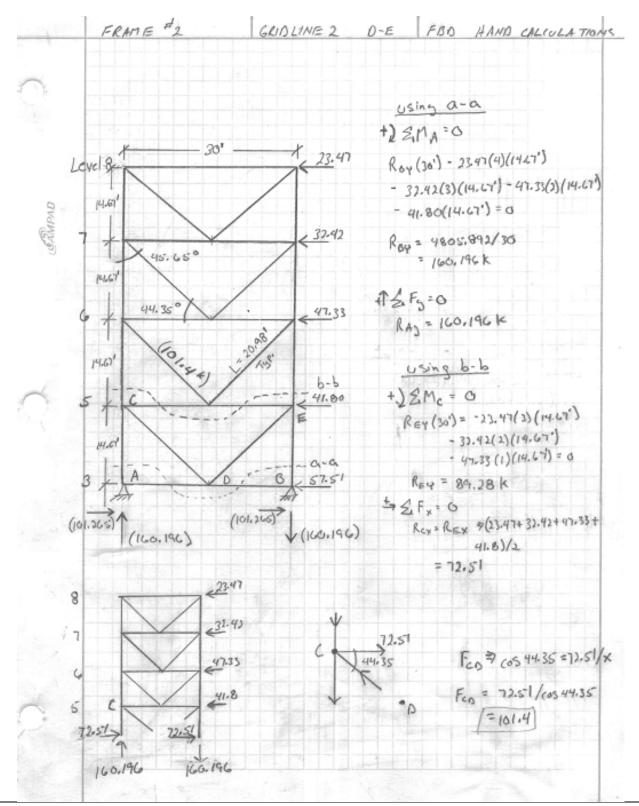
DIRERT FORCE INTO	TECH III	//-/509
ON EACH LEVEL		
LEVEL S $P_5 = 10^{-10}$ $F_1 = \frac{k_1}{2} (P_5) = \frac{1198}{3910}$	100.27 k	+ k, +k, 98,1(2) +1520.556 = 3916,756
= 30.6	69 k from Table	3,5
F2 = k2 (P3) = 1198.01(1)	75°C = 30,669 k	
F3 = k3 (Py) = 1520,556	.(106.27) - 38.927 K 75°C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(84,91) - 25	3.3 & kx = ky + ks + k6 = 5744.25
F5 = K5 Px = 2050.06 \$\frac{7}{8} \text{Kx} = \frac{30.30}{8} \text{K}	25	
F. = KC Px = 2120,89(Skx 5744.25 = 31,35 K	8441)	

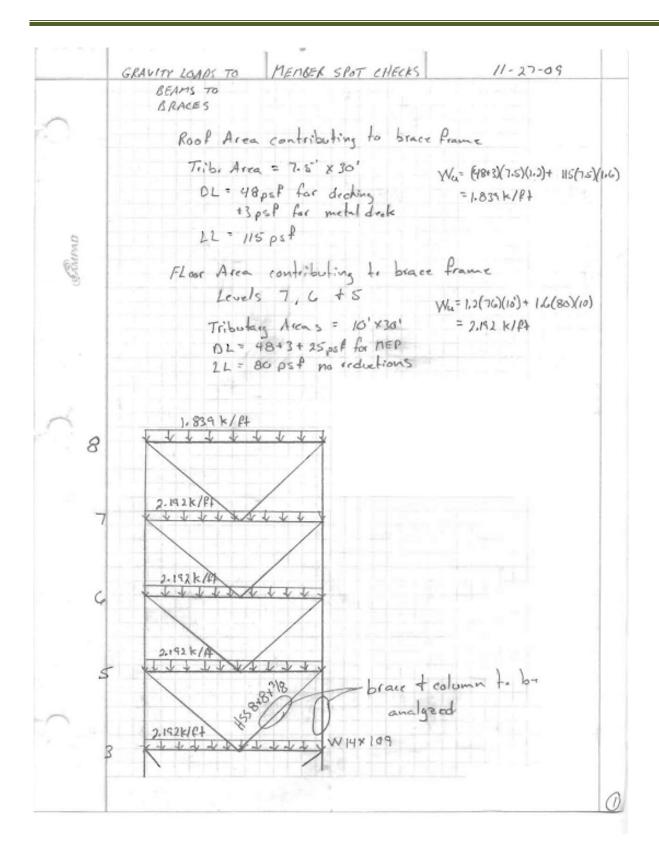
DIRECT FORCE INTO	TECH III	11-15-09
EACH FRAME		
ON LEVEL 6		
Px = 84.64 K Table 3.3	Pg = 93,73	Table 3.5
2 k = k + k + k +	ZKx = Ky+Ks	+ 46
2 kg = k,+k2 + k2 - 2(1198.01) + 1009.1		+ 1573.3+ 1627.66
= 3465', 12	= 4440.	
		- /
F = k. P. 119801 (93.73)		
F, = k. Pg = 1198,01 (93,73) 21 kg 3405.12 = 32.98 K		
= 32.98 k		
32,10 %		
E = 4. 0 = 1/98 01/98.78)		
F2 k2 P3 = 1198.01(93.73) = 3405.12.		
= 21604		
- 32,78K		
C - 1, 0 1000/(00 78)		
$F_3 = k_3 P_5 = 1009.1 (98.73)$ $g_1 k_3 = 3405.12$ $g_2 k_3 = 27.78$		
S Ky 3405.72		
= 27, 18		
· / 1. A / 2		
Fy= K4 Px = 1239.57(842	4) = 23.627K	
£kx 4440.53		
F5 = K5 Px - 1573.3(84.64)	- 29,99 K	
£ Ky 4440.53		
Fc = Kc Px = 1627,66(84,64) _ 31.02 K	
& Kx 4440.53		

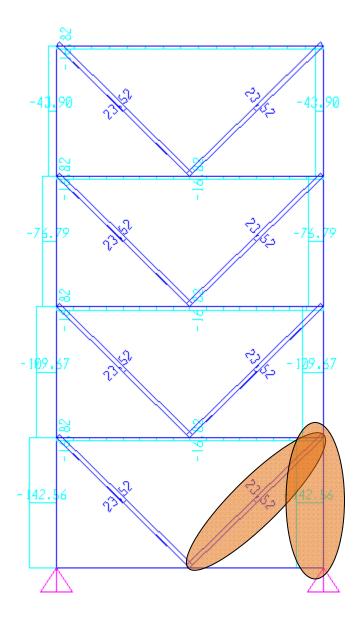
DIRECT FORCE INTO TECH	1711	11-15-09
EACH FRAME		
ON LEVEL 7		
Py = 86.37 Table 3.5	Px = 83.51 Ta	ble 3.3
Py = 86.37 Table 3.5 & ky = k, + k2 + k3 = 1009.1(3)	3 kx = k4 +k5	+ kc
= 1009.1(3)		1.571+ 1080.174
= 3027,3	= 3363,847	
F, = k, P4 - 1009,1 (86.37)		
F, = k, Py = 1009,1 (86.37) 2ky 3027.3 = 28,79 k		
- 28,79 k		
$F_2 = k_2 P_5 = F_1$ = 28.79 k		
£ks.		
= 28.79 k		
F3 = k3 Pg = F. = 28.79k		
ZK		
= 28.79K		
$F_{4} = k_{4} P_{x} = 1044.1(83.51)$ $2 k_{x} 3343.847$		
2 kx 3363.847		
= 15.92 K		
F5 = K5 Px - 1289.571 (83.51)		
£kx 3343.847		
= 30.77 k		
	,	
FL = Kc Px = 1080.176/83.5		
£ Ky 3363,847		
= 20.82 K		
1		

DIRECT FORCE INTO	TECH III	11-15-09
EACH FRAME		
ON LEVEL 8		
0	0	
Pg = 62.53k Table 3.5 Ekg = ki+k2+k3		Table 3.3
Eikg = Kitkz tkz	& kx = ke	
= 1069-1(3)		1.1 + 1239, 571 + 1080,174
= 30,77, 3	= 350	.3. 847
F, = k, Pg = 1009.3 (62.53) = 20,84 k		
F2 = F, = F3		•
Fy = K4 Px = 1044.1(49.5) = Ky 3363.847		
= 15.36 K		
F5 = K5 Px - 1239.571(49.5 2 kx 3363.847 = 18.24 k	5)	
Fc = Kc Px = 1080, 176 (49.5	5)	
Ekx 3363.847		
= 15.90 K		

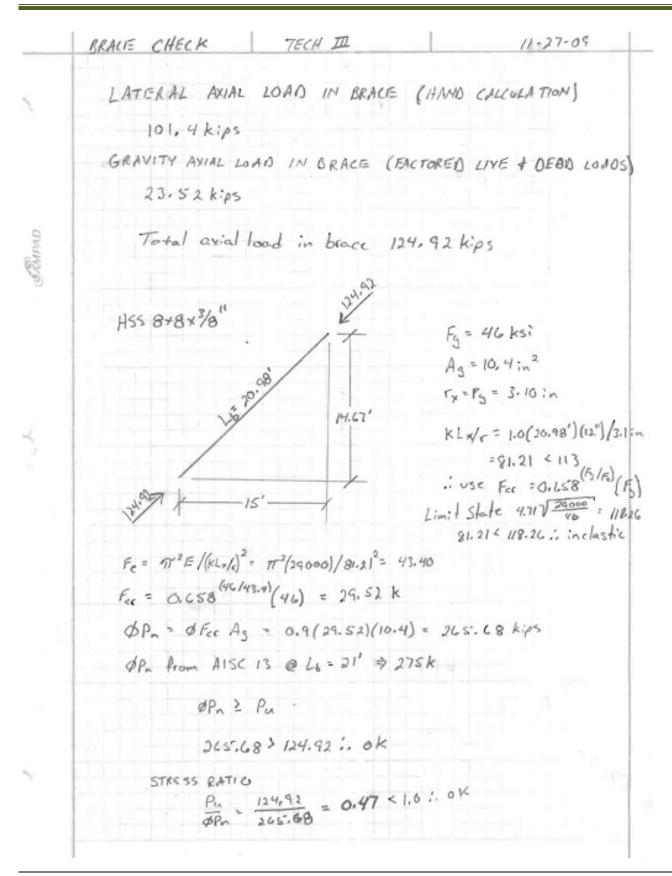
FORCE IN EACH FRAME	TECHI	11-19-09
AT EACH LEVEL		
DUE TO ECCENTRICITY	LEVEL 3	
ex = 106.06-86.29=	9.77' P= 98.4	5 k Table 3.5
ex = 106.06-86.29 = eg = 121.8'-109.5' = 1 di = distance +	12.3 Px = 81.26 from CR to frame i	k 726/2 3.3
5% minimum	of direct force	
Fi * King di Py ex		
ži kjy dj²		
7: F, = 1198.01 (18.06)	98.45) A.77	- 42/1/487.18
1/98.01(18.06)+11 =/1.91k)>5%		(77.94)2 22:016 346.97
F2 = /198,01 (76.66)	(98.45)(19.77) = /8,00	s-ck)
22010	16111	
F3 = 2419,666 (77.	948(98.45)(19.77) - 10	
,		
X: Fy = 1573.3(91.8)	(81,16)(11,3)	
1573.3(91.82) + = 19.604 K	2050,06(28.22) + 2120,89((8.22) 18631475.05
F5 = 2050,0C (28	3.2)(81.20)(12.3) = /3.8	44 k
15 03	1475.05	
Fc = 2120,89(8.		
15 6	31 475.05 5%	minimum = /15k

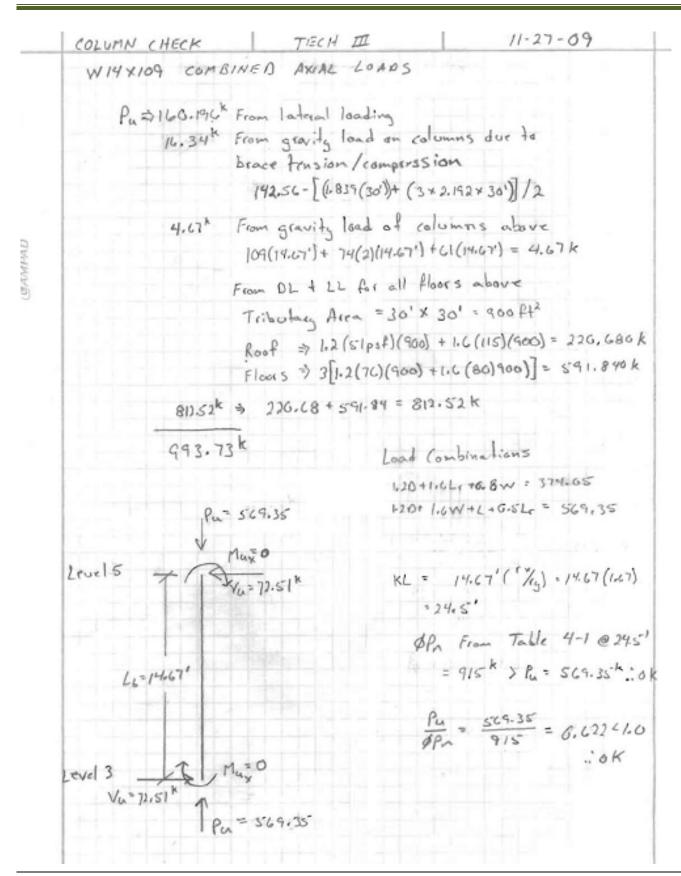

FORCE IN EACH FRAME	TEHIL	11-15-09
AT FACH LEVEL		
DUE TO ECCENTRICITY	LEVEL 5	
	0	-1/ 2 300
ex = 104.06 - 86.29 = 19.71	ry = 100.21 K	Table 3.5
ex = 104.06 - 86.29 = 19.77' ey = 109.5 - 107.53 = 1.97' di = distance from CR to frame	12 = 84.91 K	Table 5.3
di = distance from Cl to frame	J	P . 10
	5% minimu	m of direct force
Fi = Kindi Pa ex		
2kjy dj.		
LANCE V		
4: F. = 1198.1 (19.53) (100,27) (19.77)		46 384 512.41
1/98.1(19.53') + 1/98.1(77.53) 2+ 15		16 550 366.01
=/2.80 k 5% minimor	n=1.53k	
	7	
F2 = 1198, 1 (77.53) (100,27) 19,77	_ //1./3 k	
16550 360,01		
7//		
F3 = 1520,56(76.47)/100.27)(19.7	1) _ /13.93 k	
16 550 360.01	/	
X: Fy = 1573.3(76.66)(84.91)(1.97)		20 016 720,77
X: Fy = 1573.3(76.66)(84.91)(1.97) 1573.3(76.662) + 2050,06(43,94	2) + 2120,89(13,94)2	13 471 973,16
= 1.49 k 5% minimu		
F5 = 2050.06(43.94)(84.91)(1.97)	- 1.12k 5%mi	nimum = 11.52k
13 471 973.16	_	1
Fc = 2120,89(13,94)(84.91)(1,97) - 037k 5% m	in:mum = /1.57k
13 471 977-16		


		TECH II	11-15-09
DUE	TO ECCENTRICITY	LEVEL Co	
Cx .	= 105.51'-79.62' = 25.89' = 101.37'-97.7' = 3.67'	Py = 93.73 k	Table 3.5
Cy ?	= 101.37 - 97.7 = 3,67 li = distance from CR to fro	Px = 84.64 k	Table 3.3
3	5% minimum of direct		
F	u = Kindi Pycx Zi Kindj²		
4:	F, = 1009.1 (13.37)(93.73)(2	5,89)	32739819,5-1
	1009.1(13,372) + 1198.1(71.	372) + //98,1(82.632)	14463 405.5
	= 2.26 K 5% minima	om = 1.65k	
	F2 = 1198.1(71.37)(93.73)(25	:89) _ /14.35 k	
	F3 = 1198.1(82.63)(93.73)((26.89) = /16.61 k	
x;	F4 = 1239.57 (75.51) (84.6	4)(3.47)	- 29 074 834.15
	1239.57(75.512) + 1573.3(4	14,492) + 1627.66(14.492)	10 523 601.67
	= /2.76 k		
	F5 = 1573.3(44.49)(84.64)	13.67 /2.67 1	
	10 523 601.67	3.6.7 2 12.07 1	
	Fc = 1627.66 (14,49) (84.64	1/3.671 _ 6.696k	5 % minimum = 11.55 K
	10 523 601.67	7	
		,	


		FACH FRA LEVEL		TECH I			11-15-09
		ECCEN TRIC	174	LEVEL	7-		
1)01	10	LCCEN THIC	, , ,	LUIDE	/		
ev.	= 110.	32-103.12	= 7.2'	P. =	86.37 k 83.51 k	Table	3.5
	100	17'-18 54'	= 32.13'	P. =	R3.51k	T.11.	3.3
- 65	100,	distance for	201	P.	02,077	14614	2, 2
				0			
	3/6	minimum ,	of direct f	FOTCE			
	E	= 4./1.	D -V	74			
	l u	Ekiydi Ekiya	/ ý Cx				
		akjya	<i>j</i>				
121		1009.1 (12.0	71/81 271/	7 1/1		7 9	50715, 934
7,	P, -	1007,1 (72,0	+ /440 1/~:	172 + 1114	1/02 27 =	ACCORDING TO THE REAL PROPERTY.	The State of the S
		1009.1(12.672)				12.2	08 764,57
		= 0,65 k	5% min in	10m = /	1,44 K		
		1100 1/71	17/4/07/	(= a)	12 12 41		
	P2 .	1009-1(70			13.03 K		
		12 208	3 764,57				
		- 1010 1/02	201/0, 27	1/2 21	41017		
	F3	= 1009.1(83			= /4.28 K		
		122	08 764,5	,			
	_			/2 a \			24/1 01/2 000 /
Χ,	14	= 1044.1(7	3./2)(83.51)	(12./3)			204 845 999, 9
		1044,1 (73.12	1 + /234,51	(46.882) +	1080,18(16,88	3^)	8614342.637
		=/23.78 K					
		+					
	F5	= 1239,57(46	.88)(83.51)(32./3] -	/18.1 k		
		86	143 42,637				
	FL	= 1080-18(16.88) (83.5	1) (32.13)	- 15,68 k		
			4342.637				

AT	E IN EACH FRAME EACH LEVEL	TECH III	
	TO ECCENTRICITY		
ey.	= 7.2' Py = = 32.13' Px = di = distance from 5% minimum of	62.53 Table 3.5 49.5 Table 8.3 CR to frame in direct force	
4:	F, = 1009.1(12.67)(62.		5% minimum = /1,04 K)
	F2 = 1009.1(70.67)(62.5]
	F3 = 1009.1(83,33)(C2.5		
x:	F4 = 1044.1(B.12)(49.5		k
	F5 = 1239,57(46.88)(4 8 G14 342.	(9.5)(32.13) _ /10.73	3 k
	Fc = 1080.18 (16.88)	The state of the s	37 k
•			


Appendix F: Member Spot Checks



Axial loads in columns and braces determined in SAP 2000 for previous page to be added to hand calculated lateral axial load analysis.

Appendix G: Girder & Slab Sizing

Prestressed Concrete 10"x4'-0" Hollow Core Plank

2 Hour Fire Resistance Rating With 2" Topping

PHYSICAL PROPERTIES Composite Section $A_c = 327 \text{ in.}^2$ Precast b_w = 13.13 in. Ic = 5102 in.4 Precast Spcp = 824 in.3 $Y_{bcp} = 6.19 \text{ in.}$ Topping $S_{tot} = 1242 \text{ in.}^3$ Precast Step = 1340 in.3 Y_{tcp} = 3.81 in. Precast Wt. = 272 PLF Ytep = 5.81 in. Precast Wt. = 68.00 PSF

0

DESIGN DATA

- Precast Strength @ 28 days = 6000 PSI
- Precast Strength @ release = 3500 PSI
- 3. Precast Density = 150 PCF
- Strand = 1/2"Ø and 0.6"Ø 270K Lo-Relaxation.
- 5. Strand Height = 1.75 in.
- 6. Ultimate moment capacity (when fully developed)... 6-1/2"Ø, 270K = 168.1 k-ft at 60% jacking force
 - 7-1/2°Ø, 270K = 191.7 k-ft at 60% jacking force
 - Maximum bottom tensile stress is 10√fc = 775 PSI
- . All superimposed load is treated as live load in the strength analysis of flexure and shear.
- Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- Topping Strength @ 28 days = 3000 PSI. Topping Weight = 25 PSF.
- 12. These tables are based upon the topping having a uniform 2" thickness over the entire span. A lesser thickness might occur if camber is not taken into account during design, thus reducing the load capacity.
- 13. Load values to the left of the solid line are controlled by ultimate shear strength.
- 14. Load values to the right are controlled by ultimate flexural strength or fire endurance limits.
- Load values may be different for IBC 2000 & ACI 318-99. Load tables are available upon request.
- 16. Camber is inherent in all prestressed hollow core slabs and is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

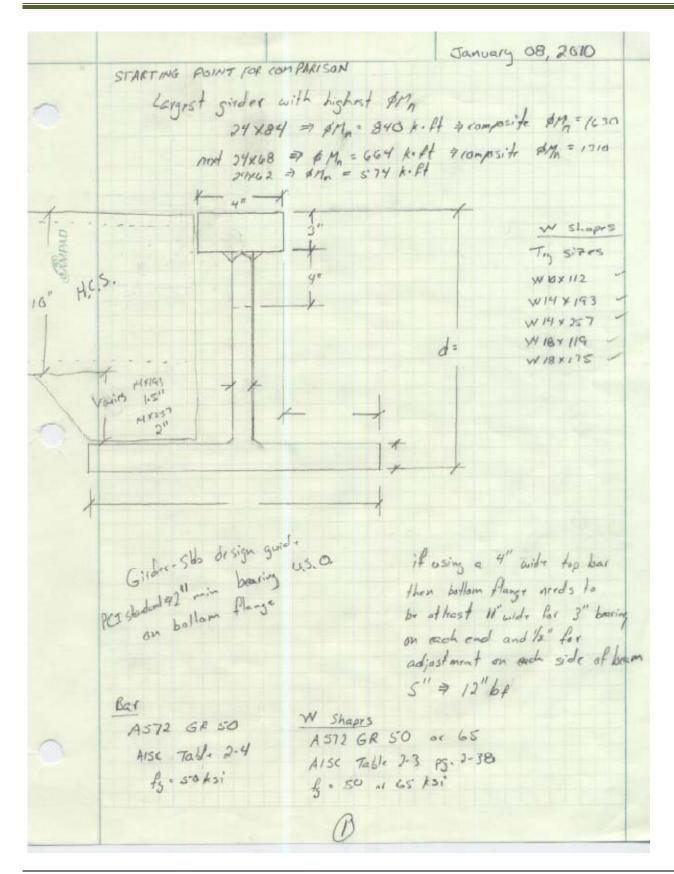
SAFE SUPERIMPOSED SERVICE LOADS									- 30	- 1	вС	2006	6 &	ACI	318	-05	(1.2	D+	1.6	L)
Strand		SPAN (FEET)																		
Pa	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	
6 - 1/2*0	LOAD (PSF)	202	181	161	144	128	114	101	90	79	69	60	52	45	38			~	<	
7 - 1/2*0	LOAD (PSF)	246	222	200	180	162	146	131	118	105	94	84	74	66	58		>	-	<	

NITTERHOUSE

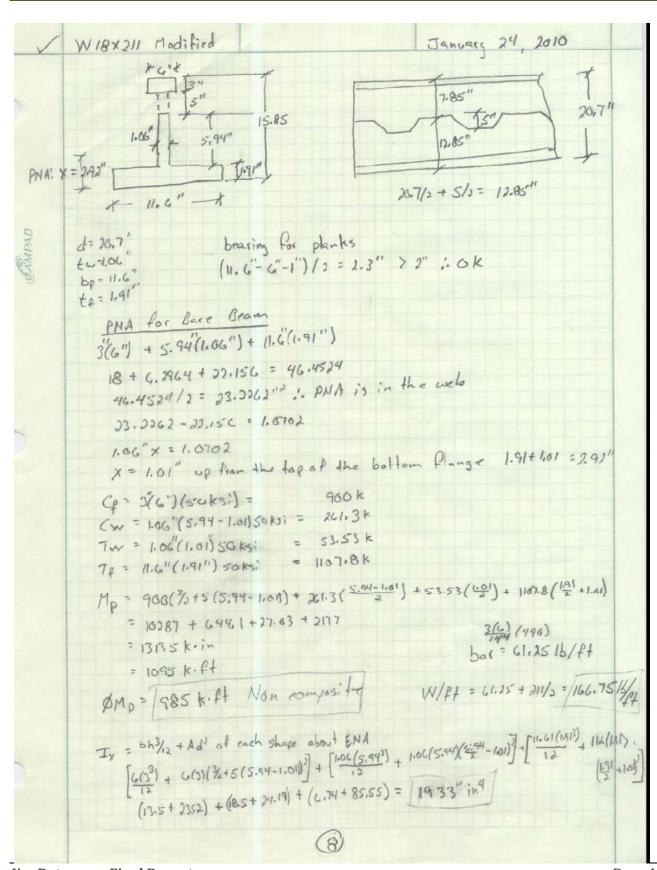
2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17202-9203 717-267-4505 Fax 717-267-4518

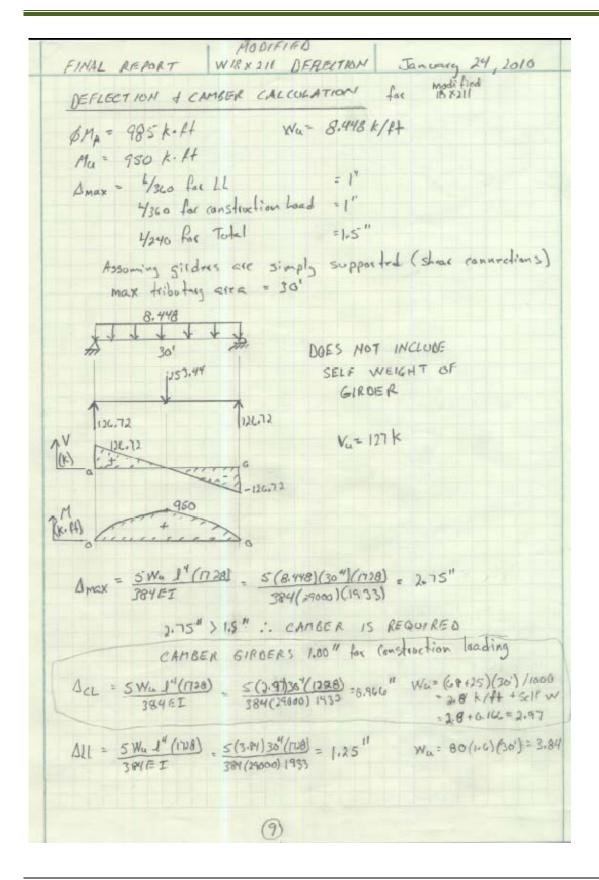
This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths. The allowable loads shown in this table reflect a 2 Hour & 0 Minute fire resistance rating.

3'-101"

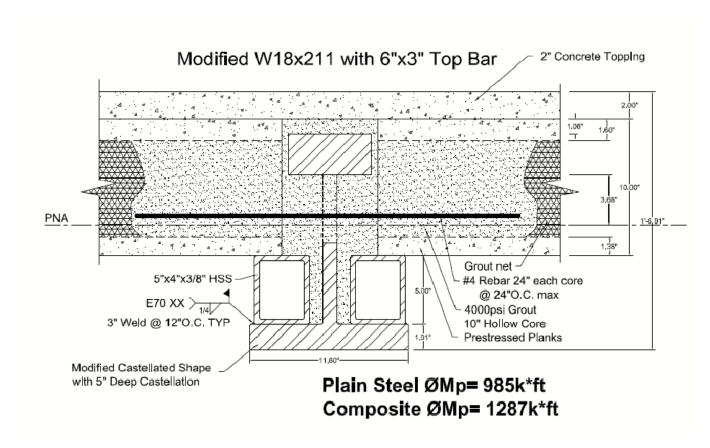

4'-0" +0", -1"

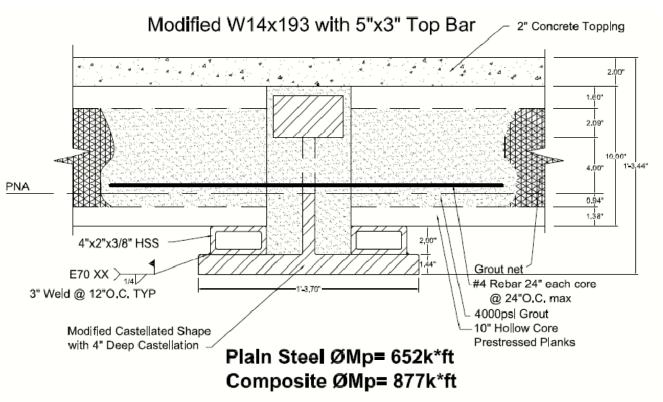
18

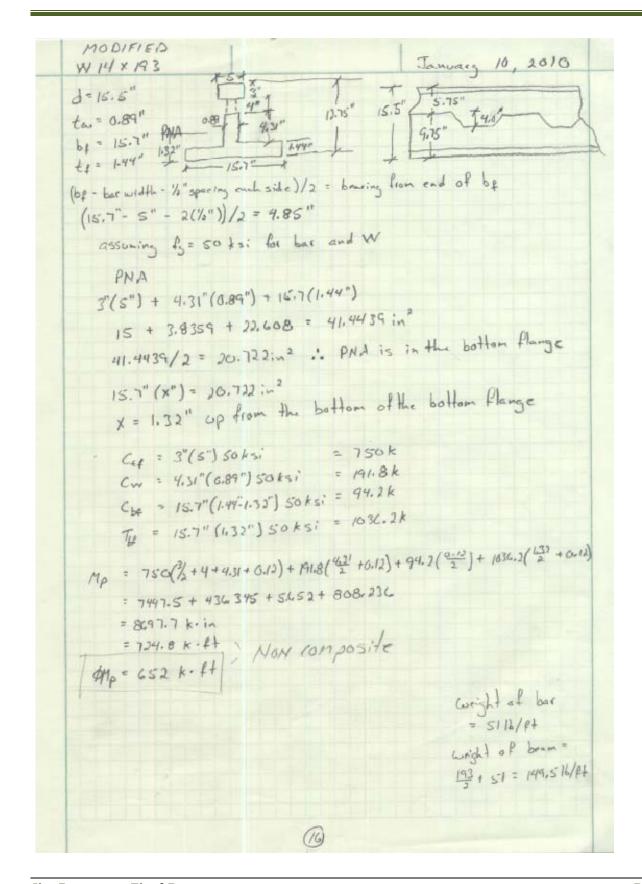

10F2.0T


51"

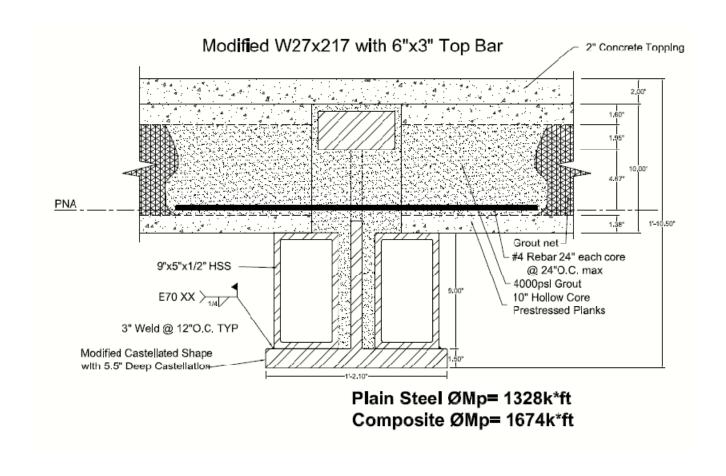
11/03/08

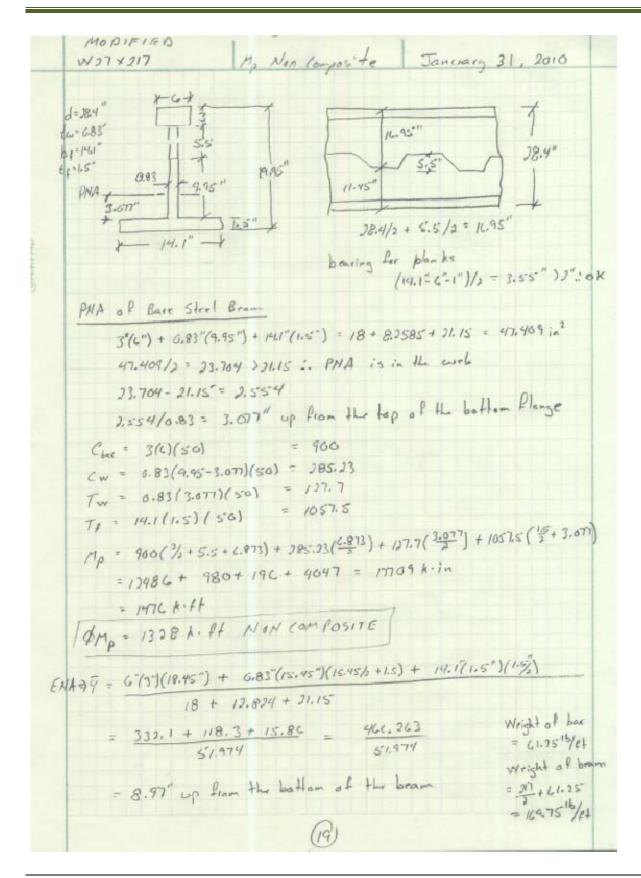

	January 24, 2010
	MAXIMUM GIRDER DESIGN LOUAD
	The weight of the Hollow care planks is 68.00 pst (Nitterhouse 10 F2.07) JHR Fire with 2" topping Plank span is approximately 29'
	SAFE SUPERIMPOSED SERVICE LOAD IS 180 psf
0	using 71/2" & Strand Pattern
Bury	All superimposed load is frembed as LL
	Wight of topping = 25 LL no Induction = 80 - = 140 pst < 180
	ASCE T-85 Hospitals : 9K MEP Indians = 35 ceiling, madeguip.
	DL = wright of plank + tapping + MEP
	= G8 + 25 + 35 - 128 psf
	LL = 80
	1.20 + 1.61 = 1.2(128) + 1.6(80) = 281.6 psf
	Distributed weight along the girder
	29116 . 3014 = 8448 16/8+ = W. @ 125 psf LL
	Mu = 8448 (30) /2 = 950.4 K. Ft / 1107 k. Ft
	@39' - 888 k.H => 1034 k.ft => 964 k.ft => 964 k.ft =>
	@17' 770 K-11 = 897 K- FT
	6 31, = 1014 k.tt => 13 90 k.tt
	(a)

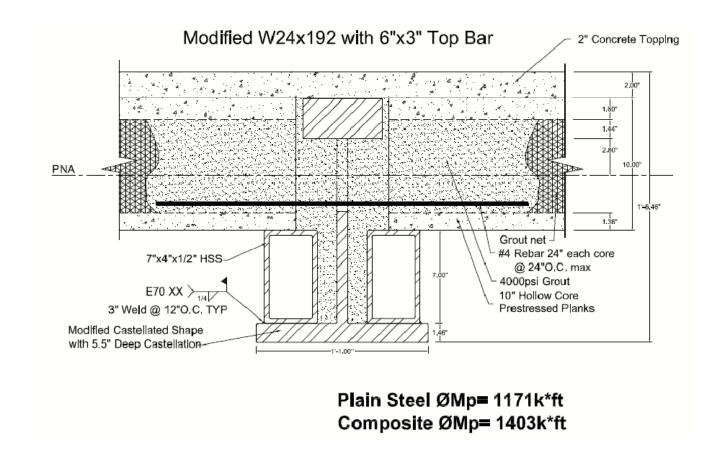


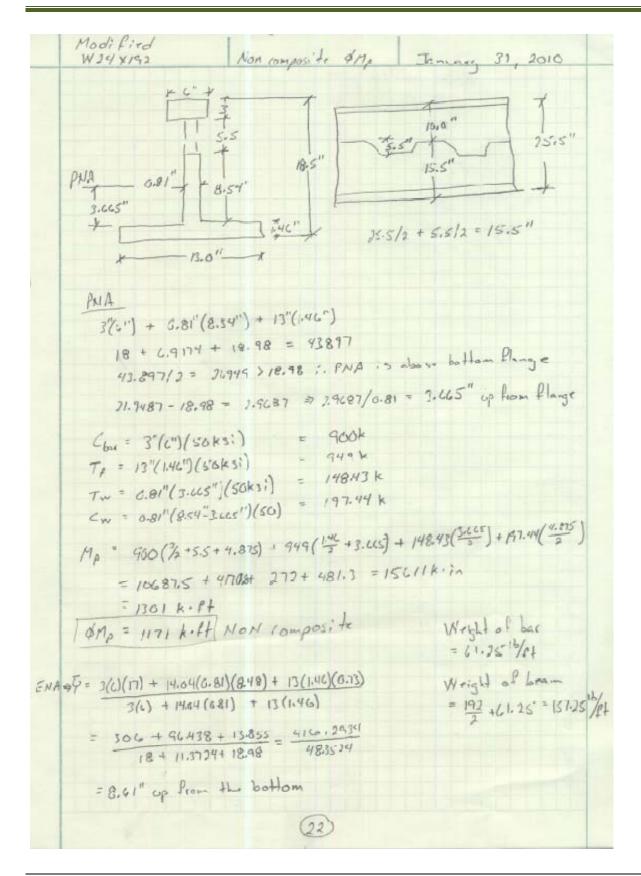


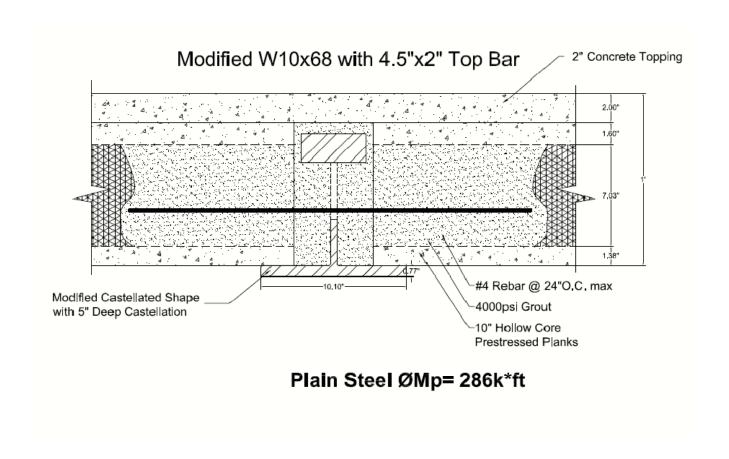

```
\frac{7}{9} = \frac{3''(6'')(15.85''-1.5'') + 10.94'' + 100''')}{3''(6''') + 16.94'' + 100'''} \frac{18.94''}{11.66'''} + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91'' + 1.91''
```

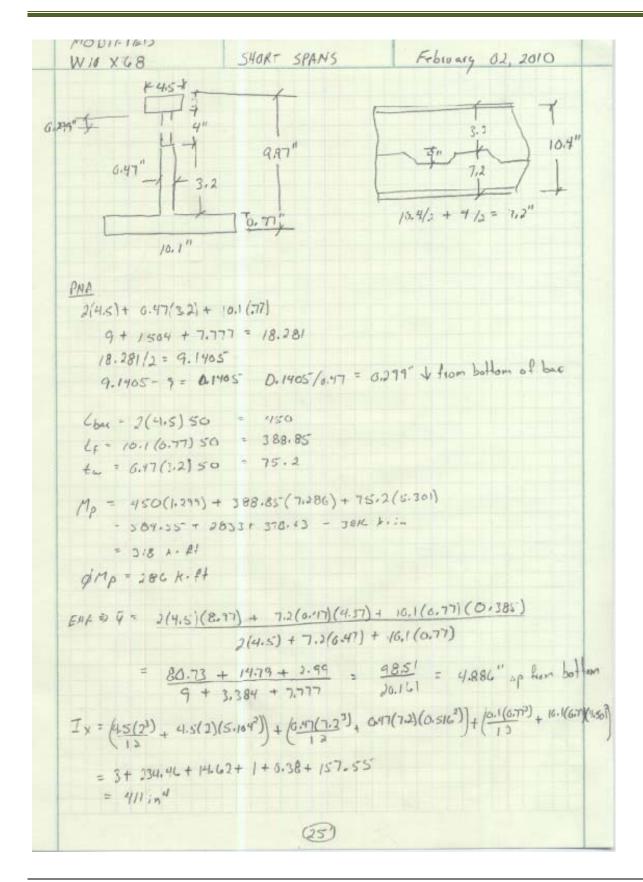

$T_{\omega} = 1.06"(5.94")(50 \text{ ks};) = 314.82 \text{ k}$ (T) $\frac{4314.82}{1492.62}$ $C_{bar} = 3"(6")(50 \text{ ks};) = 900 \text{ k}$ (C) $\frac{-900.00}{522.62}$ $C_{bar} = 17"(0.85)(4)(4.06") = 234.7 \text{ k}$ (C) $\frac{522.62}{-234.7}$	$T_{\omega} = 1.06"(5.94")(50 \text{ ksi}) = 314.82 \text{ K}$ (T) $\frac{+314.82}{1422.62}$ (C) $\frac{-900.00}{522.62}$		FROM C = T		
- 107 01 (10011-0011) - 2 (8 / 5 10)	-(23" -281.72/(25 (0.05)(4)) = 3.60 = 5 01	Tw = 1.06"(5.94") (50 kg) Char = 3"(6") (50 ks;) Con = 17"(0.85)(4)(4.06")	= 314.82 k = 900 k = 334.7 k	(T) (C) (C)	+ 314.82 1422.62 - 900.00 522.62 - 234.7
P= 1167.8(1.91"+5,94"+1,32")+314.82(5.94"+1.32")+ 900(3"+368")		1			
$P = 1167.8(\frac{1.91}{2} + 5.94 + 1.32) + 314.82(\frac{5.94}{2} + 1.32) + 900(\frac{3}{2} + 3.68) + 384.62(\frac{3.68}{2})$ $+ 234.7(\frac{4.66}{2} + 3.68) + 384.62(\frac{3.68}{2})$			A STATE OF THE PARTY OF THE PAR)	
	+ 234.7 (4.06 + 3.68) + 384.62 (3.68)	+ 234.7 (4.0C + 3.60)	+ 384.62 (3,68		
+ 234.7 (4.06 + 3.68) + 384.62 (3.68)	$+234.7\left(\frac{4.60}{2} + 3.68\right) + 384.62\left(\frac{3.68}{2}\right)$ $= 9101 + 1351 + 4662 + 1340 + 707$	$+234.7\left(\frac{4.66}{2}+3.68\right)$ $=9101+1351+46$	+ 384.62 (3.68) 62 + 1340 + 70		

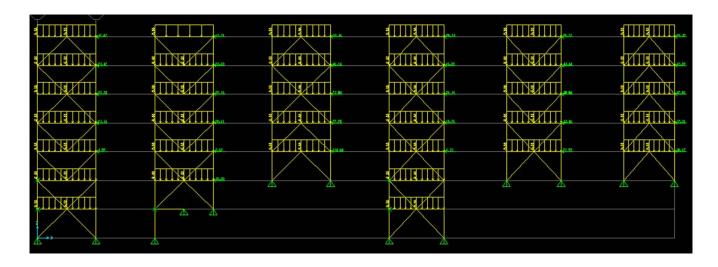


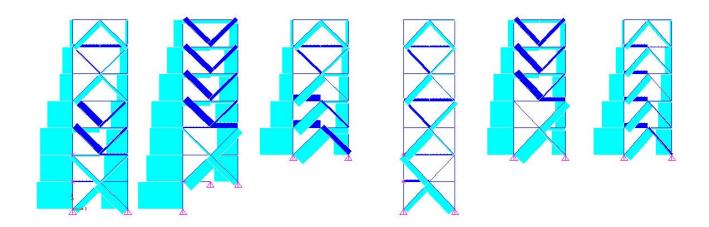



```
MODIFIED
                        In A + ENA January 31, 2016
  WH4 Y 193
 9 = 3"(5")(12.75"15") + 8.31"(0.89")(8.31"+1.44") + 1.44"(15.7")(1.44")
             3"(5") + 8.31" (6.84") + 1.44" (15.7")
    = 168.75 + 41.38 + 16.278 = 226,41
15 + 7.396 + 22.608 = 45.004
     = 5.631" up from the bottom of the bram
I_{\chi} = \left(\frac{5''(3'')^{3}}{12} + 5''(5'')(1.5''4.719'')\right) + \left(\frac{15.7''(1.44'')^{3}}{12} + 15.7''(1.44'')(6.72'' + 3591'')^{2}\right)
     +\left(\frac{6.89''(8.31'')^3}{1.2} + 6.89''(8.31'')(4.155''-3.591'')^2\right)
     = 11.25 + 580,14 + 3.91 + 426.16 + 47.56 + 443.76
   = 1502 in4
  Del = 5 (2.97+0.1495) 304 (1738) - 1.31"
            384 (29000) (1502)
                   CAMBER > 1.31(3/4) = 0.98 => /1" @ 30' Long
  PNA from C=T
                                      1130.4+191.8 - 750 = 572,2 k
  Char = 750 k
  Tf = 157(1.44)50 = 1130,4 k
                                                                   goat + plank
  Tw = 0.89(4.31)50 = 191.8 k
  T\omega = 0.89(4.31)50 - 191.0 \text{ k}
C_{c,19+} = 0.85(4)(19^n)(3.69) = 238.37\text{k}
                                            572.2-238.37 = 333.826
                                             333.83/(23(4)(0.85))=4.27"
 Cess" = 23"(4,27") 3.4= 333.83
                                            · PNA
  Mp = 750(3+4) + 1130.4(1-44 + 4.32) + 191.8(4.31) + 142.12(2.09+4) + 368(4/2)
      = 4125 + 5697 + 413+ 717 + 736 = 11688 kin
       = 974 k. ft
  OTTR = 876.6 K. HT COMPOSITE
```


MODIFIERS WOTX217	Ir, Au	6npe	January 31, 2010
			January 31, 2010 5.453) + 0.83 AS,45) (0.2557)
$ + \left(\frac{14.1(1.5^{2})}{12} + \frac{14.1(1.5^{2}$	141/1.5)(6.75	+7,47)") = 1"	3,5+148+255+1+4+1929
ACL = 5(2.97+1) 384(29) for J=	0.170)(30") 9000) 3321 30' Cambre 32' Cambre	1/2"	,594"
PNA from C=T	for composi	te action	
$T_{4} = 14.1"(1.5")(5)$ $T_{W} = 8.83"(9.95")(1)$ $C_{bcc} = 3"(6")(50 \text{ K})$ $C_{c.17"} = 3.55"(17") + 4$ $C_{c.23"} = 23"(4.61") + (6.61)$	(0.85) =	1057.5 k 412.93 k 900 k 205.2 k 365.24k	1057.5 + 412.93 - 900 = 570.43 k 11-12-0 from growt + 012 k 576.43 = 205.2 = 365.24k 365.24 /(23)(4)(685)) = 467 4.67" & 5.5"; ok 4.67" down from the b. Hom of the bac
			(83) + 960(7,+4.47)
+ 205,2 (355 +			
= 12193 + 239	7 + 55534	1512+853	
= 22318 k.in			
/ \$17pe = 1674 k.f.	(om Pos	TE	
	Q	9	


	Modified W24xM2 Ix A AMP January 31, 2010
	$I_{x} = \left(\frac{G(3^{3})}{12} + \frac{G(3)(1.5+5.5+1.39)^{2}}{12}\right) + \left(\frac{G.81(14.04)}{12} + \frac{G.81(14.04)(0.06)^{2}}{12}\right)$
	$+\left(\frac{13.0(1.46^3)}{12} + \frac{13(1.46)(\frac{1.42}{2} + 7.15)^2}{}\right)$
	= 13.5 + 1267+187+0+3,4+1173 = 2644 in 4
NAME OF THE OWNER	Acc = 5(2,97 + 0.157)(30+)(1728) = 0,74" 384(29000) 2644
9	CAMBER = 5/6"
	PNA from C-T for Composite action
	Con = 3"(6")(50 ksi) = 900k 949+345,87-900 = 394,87k Nerded from 100+100+1004
	Tw = 081(8.54)(50) Com = 304"(17")(4)(0.85) = 175.7k 219.16 /(33(4)(6.85)) = 2.80"
	$C_{c} 23'' = (33'')(2.8'') 4 (6.85) = 219.16$ $M_{P_{c}} = 900(1.5 + 2.8) + 949(\frac{1.46}{2} + 8.54 + 1.7) + 346(4.27 + 2.7) + 175.7(\frac{3.66}{2} + 2.8)$
	+219.16 (2.8) = 3870 + 11359 + 2412 + 761 + 367
	= 18709 k.in
	= 1559 k.ft PMPE = 1403 k.ft COMPOSITE
	(23)



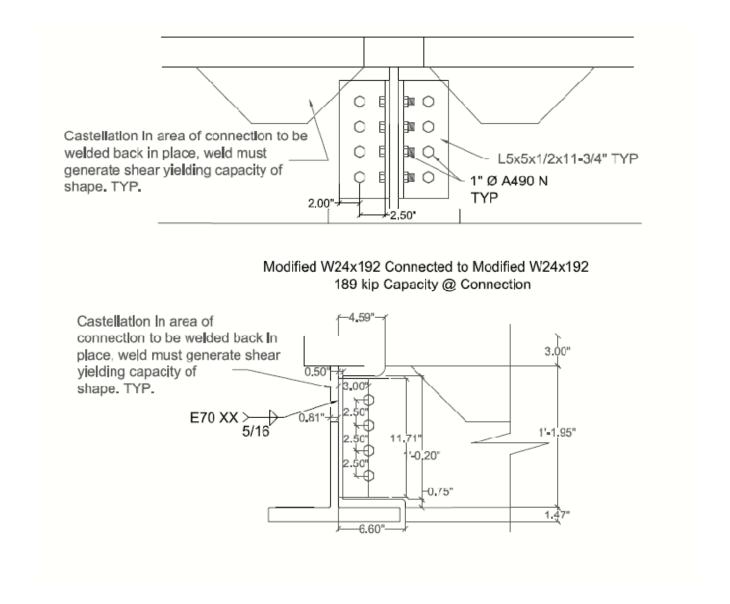
MODIFIED W 10×68	SHORT SPANS	February 02,2010
Acc for 14' sp	ens or shorter	weight of bar = 2 (45) 490 = 30.63 16/4
Del = 5(2.97+0.0 384 (29000		Weight of beam 68/2 + 36.63 = 64.63 15/et
= 0.22 in 4		
Mu =	CAMBER 209 K. Ft	
\$Mp > Ma	No need to calculate	composite action

Appendix H: Connection Load Diagrams

Full gravity and lateral loading on members shown

Magnitude of axial loads due to the above loading

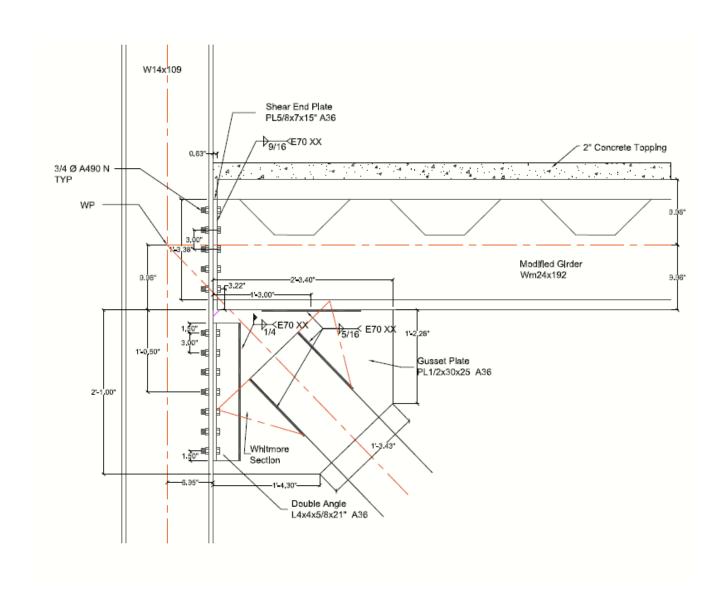
Dark Blue = Tension

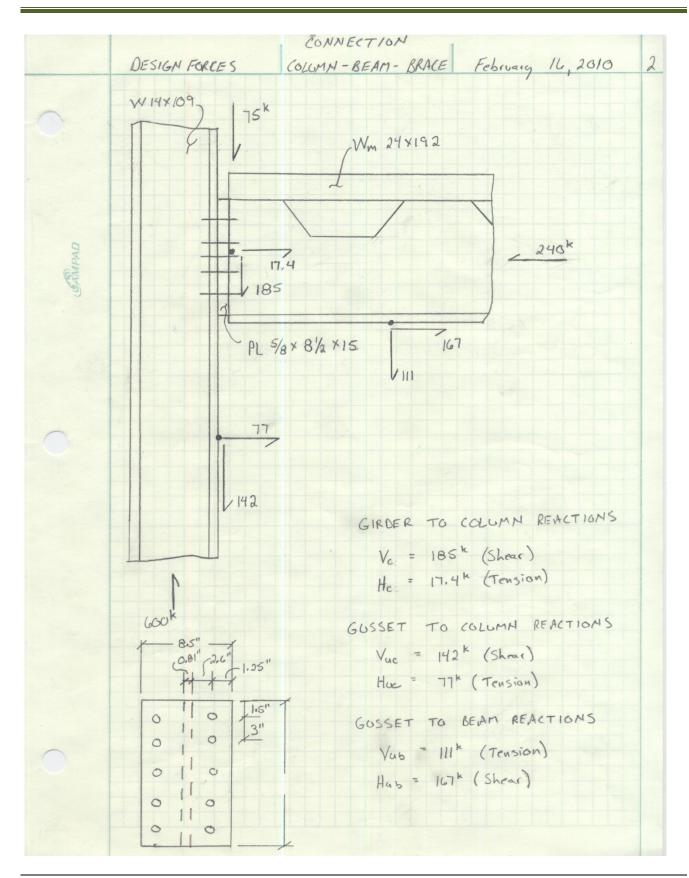

Light Blue = Compression

Appendix J: Connection Designs and Calculations

			SHEAR TAB		
	GIRDER	- GIRDER	CONNECTION	February 14, 2010	2
CAMPAD)		: A572 GR J = 11.71" Jeh = 2.0" Jev = 2.427 A = 3.6" Fa = 68 ks Fg = 50 ks width = 5.0	A S		
CAN STATE OF THE PARTY OF THE P		to = 9/11"			
		3 = Q = 3.5 STANDARD Leh 2 2 db	m: + S s ≤ 12 : 0 C K " : 6 K HOLES ARE ASSUMED ⇒ 20 = 2(1.0) : 0 Table J3.4 : 0 K	3 K	
	Bea	0,81 >	minimum edge dis +1/1c = 6.5 + 6.0625 = 9/1c'' OK $\frac{ds}{2} + 1/1c = 9/1c = 0.50$ ity can be ignored	= 6.5625	

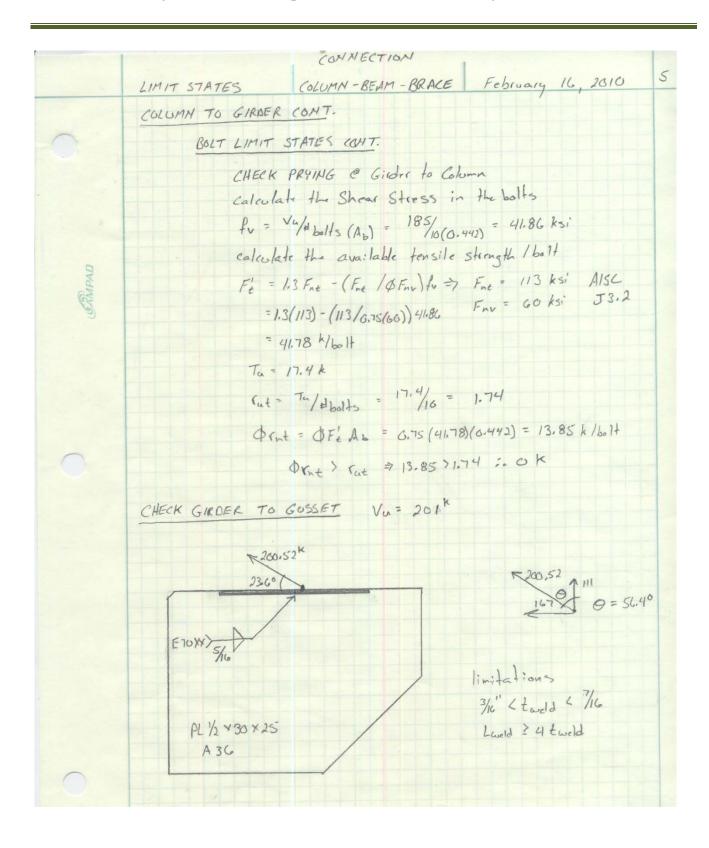
	WINDUX192 - WIN 244192 SHEAK TAB GIRDER - GIRDER CONNECTION February 14, 2010	3
	LIMIT STATES: Vu = 140 kips	1
	Wm 24×192 @ 28' Long and full D1 + 125 psf LL	The state of the s
	OVn Poplare = 150 k OVn Pielding = 339 k :- OK	
DVO	Bolt Shear = 4(44,24) = 176.8 k :. OK	
CAMPAD	Bolt Bearing on Plate	
	φrn = φ 2.4 Fu do tp ≥ 35.3	
	= 6.75(2.4)(65)(1)(0.5625)	
	= 65.81 :. ok	
	Bolt Brazing on Bram	
	Ørn = \$ 2.4 Fu db tw ≥ 35.3	
	= G.75(2.4)(65)(1)(6.81)	
	= 94.77 : OK	
	Bolt Tear out @ edge	
	Φ1.2 Fu Le tp	
	G.75 (1.2)(65) (2.105-1.125/2)(0.5625) = 5075k	
	Bolt Tear out other bolts	
	Ф1.2 Fu Letp	1
	6,75 (1.1)(65)(2.50 - 1.125)(0.5625) = 45.25 k	
	Bolt T/o, Boaring + Shour combined	
	show is the lowest always 176.8 k :OK	
	:. 176.8 % iok	1

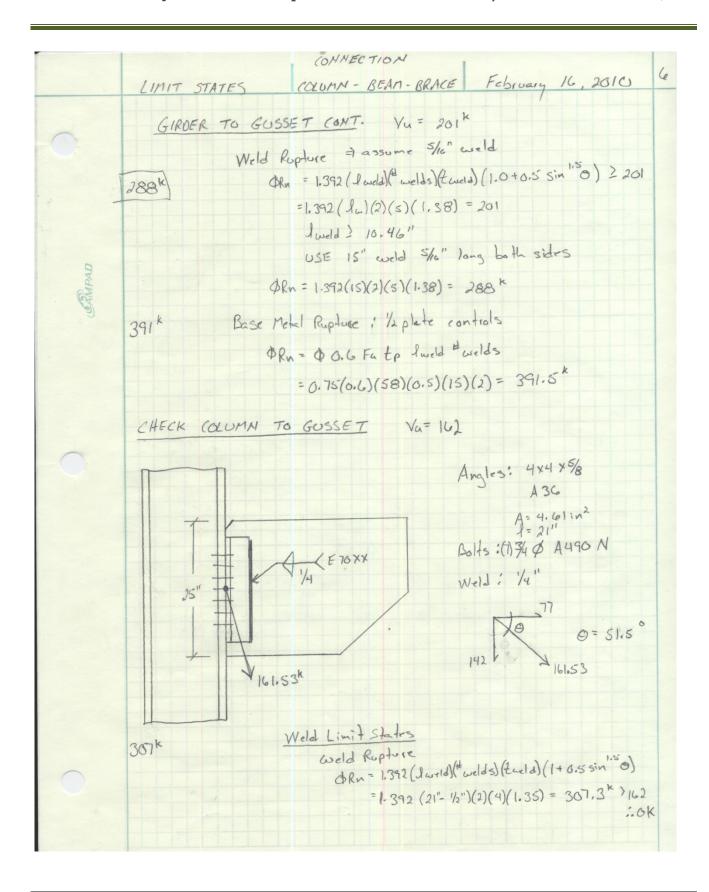

	Wm 24xA2 - Wn 24x192 SHEAK TAB GIRDER TO GIRDER CONNECTION February 14, 2010
	LIMIT STATES
	Black Shear in the Shear Plate will control over the bram
	Black Sheas supluse yielding
	Black Sheas Plate 7 D[O.C. Fu Anu + Ubs Fu Ant] & D[O.C. Fy Agr + Ubs Fu Ant]
	Fu= 45
0	Fh = 50
SAMPAD	Agr = 11.71 "(0.56%)=2.59 in 2
CK.	Anv = Agr - (# bolt holes (+hk) (db+/8)
	= 6.59 - (4(0,5625)(1.125))
	= 4.06 :n ²
	Ant = tp (l+m - 1/2 db) = 0.81(2-1.125/2) = 1.164
	U 65 = 1.0
	bean t plate have the same Fy & Fu i. Shear suptore in the plate will control over block shows
	Plate
	Shear girlding => \$ B.C FgAgv
	= 1(0.6)(50)(6.59) = 198 × 7160 :. 0k
	Shar Rupture => O. G. Fu Anv
	= 0.75 (0.6)(65)(4.06) = 119 6 160
	NO GOOD
	WILL HAVE TO ITRY
	A DOUBLE ANGLE

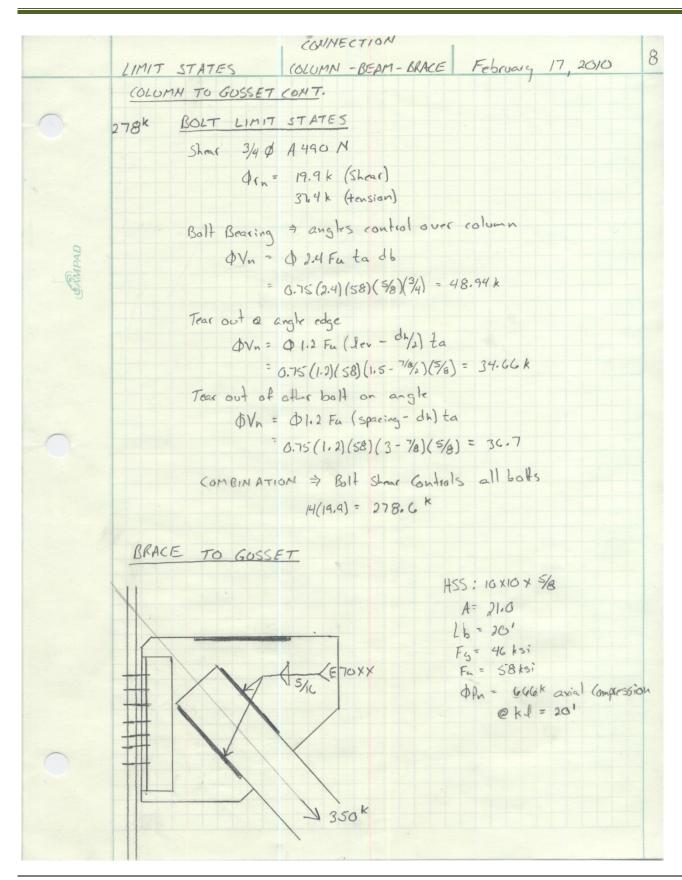

	Wm 24 x192 - Wm 24 x192	DOUBLE ANGLE	1 45 45	3
	GIRDER - GIRDER	CONNECTION	Frbivary 15, 2010	1
	Angles: A3C	BOLTED - BOLTED BOLTED		
	5 × 5 × 1/2 J = 11.71"	A 490 N		1
	A = 4.75 in 2	n=4 Orn=54.1 k	bould show	
	q + \(\times = 1.42''		single Shear	
	Fu = 58 k			
10	Fy = 36 k			
CAMPAD	leh = 2" lev = 2.11"			
9	Vu max = 140 kips			
	Bolts in bram:	54.1) = 216.4 k > 140	· ak	
	in beam		,, ,,	
	Bolt Bearing > \$3	1.4 Fu do t b = 0.75(2	.4)(65)(1') 6.81 = 94.77k	
	Bolt Tranout => 0	1.2 Fulcts = 0.75(1.2)(65)(2.11-11/2)(0.81) = 76.34	k
	Bolt Tranout => 0	1.2 Fulctb = 0.75(1.2))(LS)(2.5-1)(0.81) = 71.1k	
	beam others			
	B. It Sh	en Controls on all		
	Beam: Shear Yielding =	00.6 Fg Agr = 1.0 (0	(6)(cs)(0.81)(11.96)(0.81) = 339 k C	K
	Shear Rupture	\$ \$ 0.6 Fa Anv = 6.75 (0.	6)(cs)(6.81)(11.96-4(1"))=188.6	
	Block Shrac \$ \land \land \text{Shrac} An	v + Ubs Fu Ant] = O[o. 6 Fy Agu + Ubs Fu Ant]	
	O.C. Fu	Anv 6 O.6 Fy Agr io		
			D= 0.75	
	= 0.75 (25).		Ube= 0.5 Ant = tb (a-da/a)	
		>140 .: ok	= 0.875 (3-0.5) = 2.188	

	Wm24x 192 - Wm 24x192 GIRDER - GIRDER	CONNAISCTION	February 15, 2010	
			H nsk	5
	Shear Yielding	=> \$0.6 F5 Agv =	1.0 (0.6) (36) (11.71) (0.5) (2)	
		= 252, 9 k 7140 :.	OK	
	Shear Runding	= AGIFI Agran	Any = Agy - Bolt (ds) ta	
	Chekt Hopisto	= 0.75(0.6)(58)(3.855	11.71(0.5) - 4(1)(65	5)
DV	01 1 (1	= 201.2 k >140 : 0		
CAN AND AND AND AND AND AND AND AND AND A	Block Shear	10 2 14 7 4 1	G.C Fy Agr + Ubs Fu Ant]	
9)	4 Oic tu	Any Tubstamy - TL		
	9=6.75	Ubs = 0.5 Anv = 3.	855	
	Φ[6,6 Fu	Anv + Ubs Fa Ant]	Ant = ta(lev - do/a) = 0.5(2-0.5) = 0.75	
	= 0,75 (0	,6 (58)(3,855)(2) + 0.5(5)	2)(0.75)(2)	
	= 233.9	k > 140k : ok		
			I TOK BOO COPEN DEAM ELEY	OR
			FICK FOR COPED BEAM FLEX	
	Flexural Viela	ling = 0.9 Fg	Snet => Snet = tacho	
		=0,9(50)(20.13) = 0.81 (2.21 ²)	
	poold limitations C \le 2 d de \le 6.2d	=905.7 k	$\begin{array}{ccc} 30.13 & = 0.81 (0.21^2) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ &$	
	CE 29	Ma= Vare =	e= 4.599	
	de & 0.2d des = det not met	= 140 (4,594	4) = 643 £ 905.7 :. OK	
		ckling > Domn = OFoc	Snet > Ma = 643	
	· OFbe Snet = OFer	= OFy Q = 1 for 2	1 5 0.7 1.486 8) for 0.71 8 6641	
			1 1141	
		2 = ho Trs	12.21 \ 50	2
		10 to 2475 + 28	$\frac{2}{12.21\sqrt{50}} = \frac{12.21\sqrt{50}}{10(6.81)\sqrt{495 + 280(\frac{12.21}{6})}}$ = 1)
		=0.264 : @	=	
	OF3 = 0.9(50) = 45	16		
		1	415C ps. 9-7	

Typical connection @ column and girder bracing location

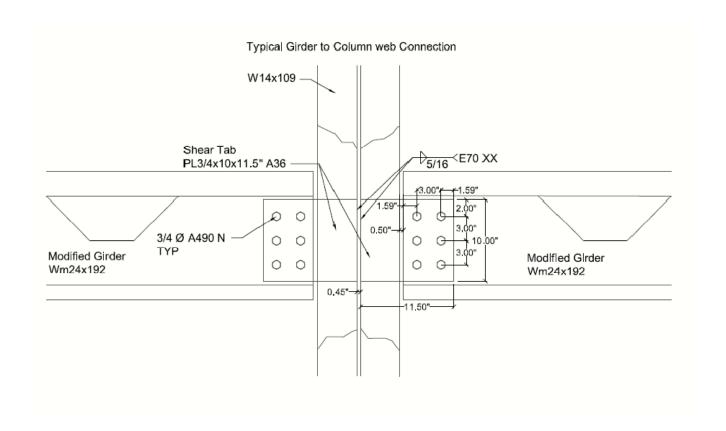


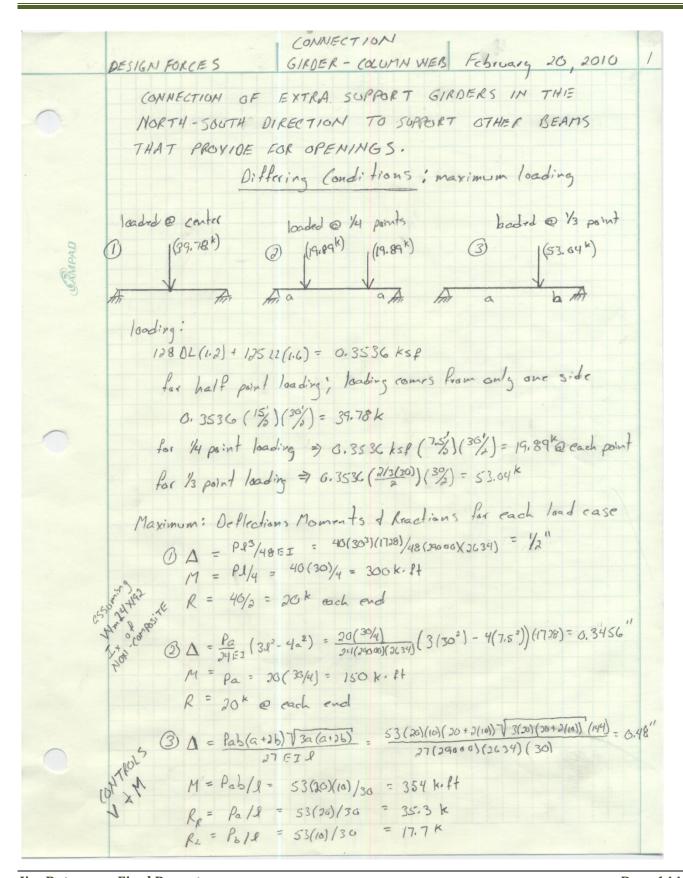

	DESIGN FORCES AND LENGTHS	CONNECTION COLUMN-BEAM-BRACE	February 12, 2010	
	ASSUMING NO	ECCENTRICITIES		
	i.e. UNIFORI	7 FORCE METHOD		
	Cb = 9,9567"	ec = 6.95"		
	Pu = 350 k			
	. 0= 44° A	tan 0 = 0.966	tano = ec + d	1
DAD	10'		es+B.	-
CAMPAD	d = assumed	to be 15"	B.966 = 6.95+15	
	B = 1276"		9.9567+B	1
			B = 12.76"	1
	(= V(ec+d)2+(ex	$(+\beta)^2 = 31.59$		
	$\frac{P_{uc}}{r} = \frac{V_{uc}}{\beta} \Rightarrow \frac{350}{31.5}$	59 = Vac 12.7C		
	Vac = 141,37 k			
	$\frac{Vac}{\beta} = \frac{Vab}{eb} \Rightarrow \frac{141i}{12i}$	$\frac{37}{76} = \frac{\sqrt{65}}{9.9567}$		
	Vub = 110,31k			
	Hac = Vuc > Huc	= 141.37 (6.95)	GUSSET REACTIONS	-
	Hac = 77k		30" assumed	
	Hub = Vac > Hub =	141.37 (15)		
	Hub = Vac > Hub	12-76	K-7 1	1
	Has = 166.19 k	BALLA	1111	
		25"		
		assumed	3/	
		+		
			PL 1/2 × 30 × 25	
			A 36	

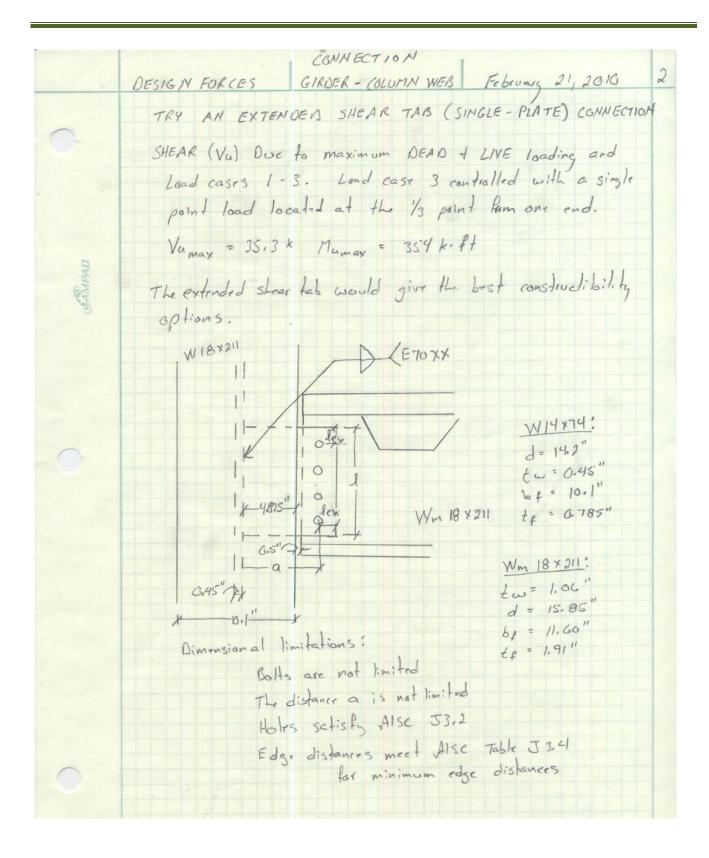


	CONNECTION	
	LIMIT STATES (OLUMN - BEAM - BRACE February 16, 2010	-
	CHECK COLUMN TO GIRDER ; BOLTED END PLATE	
	Vu = 185 K BOLTS: 3/4 \$ A490 N	
	GIRDER LIMIT STATES	
	dVn(x) Shear Yielding > O.6 Fy ho tw	
	484	
ИРАБ	368 Shear Rupture = \$ \$0.6 Fa An	
(A)	4Vn = 6.75 (0.6) (65) (19.91 - 5(76)) 0.81 = 368 k	1
	329 Girder Web Strongth @ weld	
	Plate length = 15, tp = 5/8"	
	tweld = 5/8 - 1/1c = 9/16" = 0.5625"	
	DVn = OO.C Fu (lp - 2 tweld) (twels)	1
	= 6.75 (6,6)(6) 5 - 2(0.5625)(6.81) = 329 k	
	520k Weld Rupture	
	520 k Weld Rupture = 5,35° 90-0= 84.65°	
	DVn= 1.392(1p-2tweld)(twelds)(tweld)(1+0.5 sin 90-0)	
	= 1.392(15-2(0.5625))(2)(9)(1.497) = 520 K	1
	Prying on Plate will be checked with bolts	1
	PLATE LIMIT STATES	
	Shear Yielding > \$0.6 Fy 1p to Shear planes	
	405	
	Shear Ruptur => \$0.6 Fa An	1
	An= 2(1p-holes) to = 2(15-5(76))(0.625) = 13.28i	2
	AV - 275/2 (18 28) = 346.6	
	346	

	CONNECTION
	LIMIT STATES COLUMN - BEAM - BRACE February 16, 2010
	COLUMN TO GIRDER CONT.
0	PLATE LIMIT STATES CONT.
	320k Plate Black Shear = $\phi R_n = \phi \left[0.6 Fu Anv + U_{bs} Fu Ant \right] \le \phi \left[0.6 Fy Agv + U_{bs} Fu Ant \right]$
CAMPAD	$Obs = 1.0 \text{ for uniform tension}$ $Agv = (lp-ln)tp \text{ thear planes} = 13.5(0.625) 2 = 16.875; n^2$ $Anv = Agv - (holes(tp)) = 16.875 - (8(76)(0.625) = 12.5; n^2$ $Ant = 2 tp (len - 47/2) = 2(0.625)(1.25 - 3/4/2) = 1.094; n^2$
	PRn= 0.75[0,6 (58)(10.5)+ 58(1.094)] ≤ 6,75[6.6 (36)(16.875)+ 58(1.094)]
	= 373.8 \(\) 320 \(\) 320
	226k Plate strength @ weld
	PVn = 0 06 Fa (Jp-2tweld)(tp) = 0.75(0.6)(58)(15-2(0.5625))(0.625) = 226 k
	BOLT LIMIT STATES & Bolts connecting girder to column
	199k)
	Bearing on plate => controls over column
	Φ Rn = Φ 2.4 Futp db = 0.75(2.4)(58)(0.625)(7/4) = 48.93 k/6.11
	Tear out on plate edge ORn = 01.2 Fu (lev - dm/2) tp = 0.75(1.2)(58)(1.25 - 7%)(0.625) = 26,5 k
	Tras out off atter bolts on plate
	Shear, braing, T.O combined = 10(19.9) = 199 K

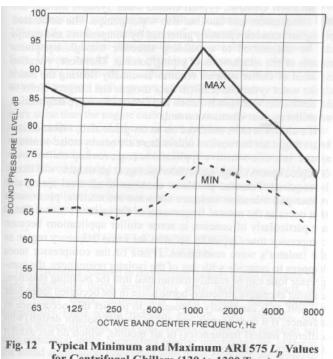






			CONNECTION		E1. 17 2016	
		STATES	COLUMN - BEAN		February 17, 2010	
	BRACE	E TO GUSSET	Ru = 350	3		
	501 k	Weld Ruf	store 7 all long	gitudinal we	1ds => 1.5 factor	
					t tweld = 5/16"	
		Ø Rn	= 1,392 lweld to	uelds tweld	1.5 2350	
			1,392 (Lweld) (4			
			lweld 2 8.3		x Sidr3)	
MPAD		ØRn.	assume 12" = 1,392 (12)(4)(5)(1.5) = 50	1.12 K	
2	624K		el Rupture =			
				tp=0.5	1 thss = 0.625	
				plate con	trals	
		dRn	= \$ 0,6 Fatp	Iweld twel	ds	
			=0.75(0,6)(58)	(0,5)(12)(4)	= 626.4 "	
	869k	HSS Tensile	Yizlding = 8	69k = AISC	5-C Table 5-5	
	[345k]	HSS Tensile	Repture = \$	0.6 Fu Ae =	7 Ac= Anu	
	1343			An = Ag	- Slots = 21.0 - 12(78)2	
					= 20,375 in²	
				U= 1- =	lweld	
				X = B	$\frac{1}{4(8+1)} = \frac{16^2 + 2(16)(10)}{4(10+10)}$)
				= 30	0 = 3.75	
				U= 1-3	75 = 0.6875	
			OR = 0,75(0.6)	(58) (20.375)(0.68%) = 365.6k	
	587 K	Block She	ar of plate			
			ORn = 0[0.6	Fy Agr + Us	s Fu Ant]	
			- An = 1	(1)" (a)d +5,	85 edge distance (tp)(2)	
				(17.85)(0.	5)(2) = 11.85 in	
			Ant =	10(6.5) = 5	int	
			ORn=0.75[0.6(46)(17.85)+	1.0(58)(5)] = 587k	

	1		CONNECTION		E1. 17 2016	
		STATES	COLUMN - BEA		February 17, 2010	
	BRACE		Ru = 35			
	501 k	Weld Ruf	store 7 all lon	gitudinal we	1ds = 1.5 factor	
					t tweld = 5/16"	
		ФRn	= 1,392 lweld #	welds tweld	1.5 2350	
			1,392 (Lweld) (L			
			lweld 2 8.3		x sidrs)	
MPAD		ØRn.	assume 12" = 1,392 (12)(4)(5)(long (1.5) = 50	1-12 K	
3	624K		al Rupture =			
	02			tp=0.5	1 thss = 0.625	
				plate con	trals	
		dRn	= \$ 0,6 Fatp	lweld twel	ds	
			=0.75(0,6)(58)	(0.5)(12)(4)	= 626.4k	
	869k	HSS Tensile	Yirlding = 8	869K & AISC	5-C Table 5-5	
	[345k]	HSS Tensile	Repture = 0	O.G Fu Ae =	7 Ac= Anu	
	1343			An= Ag	- Slots = 21.0 - 12(78)2	
					= 20.375 in ²	
				U= 1- 7	lweld	
				X = B	$\frac{2^{2} + 2BH}{4(B+H)} = \frac{16^{2} + 2(16)(10)}{4(10+10)}$)
				= 30	0 = 3.75	
				U= 1-3	75 = 0.6875	
			ORn = 0,75(0.6)	(58) (20.375)(0.68%) = 365.6k	
	587 ^k	Block She	ar of plate			
			ORn = 0[0.6	Fy Agr + Us	s Fa Ant	
0			- A ==	(12", ald +5.	85 edge distance (tp)(2)	
				(17.85)(0.	(5)(2) = 11.85 in	
			Ant =	10(G,S) = 5 (46)(17.85)+	1.0(58)(5)] = 587k	



	CONNE	211014	F1
	PLATE SIZES & LIMITS GIRDER -	COLUMN WEB	Peloroary 21, 2010
	Maximum Plate length (V	restical depth)	is limited to the
	T dimension of Wm 18 x 21	11 section :	~ 10".
	Minimum plade width has	to be wis	der than
	(1/2 bfe - 1/2 tax) + 1/2"gap	+ lek + space	ng + dek
	4.825 + 0.5 + 1.5875 +		
AMPAD	Eccentricity must be cons		
CAN STATE OF THE S	e = 4.825 + 0.5 + 1.5875 loading angle = 0°	+ 3/3 = 8.413"	for a double row
	loading angle = 00		of bolts
	Plate thickness limit		
	Emax & C Muzz	Y/E, 12	Mmax = 1.25 Fo Ab C'
			Fu= 60ksi for A490
	\[\left(\frac{712.185}{36(10^2)} \]		Ab= 6.601 in 2
	<u> </u>		C'= 15.8 for e= 8.413
	4 0 W		Mmax = 1.25(60)(0.601)(15.8) = 712,185
	Try a PL 3/4 × 10 × 11/2		
	Plate: A36	Bolts:	
	F5 = 3C	784	4490 N
	Fu = 58 lev = 2"	BRn =	Cφ(n = 1.71(27.1) = 46.24 × > 36:0
	Jen=1.5'875" Vu=36k Mu=Vu=e=36	(0 ms) - 203 k.	
	46k COMBINED BOLT GROW bearing => Orn= C		
	Death of the	75 (2.4) (58) (0.75	5)(7/8)=68.5k
		1 1125	(lev-dy) tp (58)(2-1/3)6.75 = 58.73k
	ROLT SHEAR	CONTROLS O	bRn=46k736k

			CONNECTIONS	5 1	
	LIMIT	STATES	GIRDER - COLUMN	NEB Febru	ary 20, 2010
	PLAT	E LIMIT STA	TES		
	162 K	Shear Vield	ing = ORn = 00.6	Fg Ag = Ag=	h(tp)
	164		= 1.0(0.6)	(36)(10)(0.75)	= 162 K
	137k	Shear Ruptu	re =) Ohn = 00.6	F. A. => A.	n= Ac - ((3dn)(tp))
			=0.75(0.1.)(0	181(5.25)	= 7.5- (3(1")(0.75))
0			= 137 K	88,6	= 5.75
MPA	218k	Block Shear	=> O Rn = 0 [0.6 Fa Am	, + Ubs Fu Ant] & c	O [O. C. Fy Agr + Ubs Fu An
2			5=1.0		
			1 - 7 - 7 -	ind	- 20) (0.75) =4.5/: 2
		An	5v = 10(6.75) = 1.5 v = (10 - Jev - 2.5 dn)(1)	(p) = (10-200)	675+21-1.5(1)/675)= 2.
		An	t = ((leh + spacing) -	1.5dh) tp = (4.5	812.3) 13(1)(0.13) 2.
		PRn =	3,75[6,6 (58)(4.5) +1,0(5	(2.32) { 6.75 [6	.(36)(7.5) + 1.0(58)(2.32
			218,37 € 222,42		
	657 Kin	Plate flexus	e Using Von - Mise	s Shear Red	luction
		Ma & OM.	1 => Mu = 303	k. in	
		ΦM _n	= OFer 2 = Fer	= \Fg2 + 3 f	P = Valo
				= 362-3(0.34	
				= 36	= 0.348
		ΦMn	= 0.9(36)(18.75) = 6071		$z_p = dp^2 + p/4$ = $10^2 (0.75)/4$
			1 0 1	in BK	= 18,75 in ³
	861 kin	Plate Flexus	Repture > OFu &		
			Znet = 2p - 2 nolrs	=> Zhole	
			= 18.75 - 2.25		= 0.75(1")(2(1.51)
			= 16.5 in ³		
			0.9(58)(K.S) = 861.3	in > 303:	ok

	CONNECTION	-
	LIMIT STATES GIRDER - COLUMN WEB February 21, 2010	
	PLATE LIMIT STATES CONT.	
	Plate buckling => top and bottom "copes" are not =	-
	therefore use the equation for de 0,2d	-
	Fer & Fg	-
	Fc = Fg Q => Q= 1 for 2 40.7	1
AD.		-
MX	$\lambda = \frac{h_0 \sqrt{F_5}}{10 \ell_p \sqrt{475 + 280(\frac{h_0}{c})^2}} \Rightarrow h_0 = 10''$ $(= 4.825 + 0.5 + 3 \ell_b + 1) + 2 \ell_b = 10''$	-
9)	= 6,9/25	
	10/36 10(0.75) \[475 + 286 \(\frac{10}{6.9125} \)^2 \\ 7.5(\[\] \(\]	
	10(0.75) \ 475 + 285 \(\frac{10}{6.9125}\)^2 \ 7.5(\ \ 475 + 586')	
	= 6.246 : B = 1 + Far = Fy and plate	
	buckling does not	-
	WELD LIMIT STATES Control NO ECCENTRICITIES FOR WELDS	-
	assume had = lp-2 tard + tweld = 5/10 on both sides	
	30k Weld Ruptur = ORn = 1,392 lu twelds tw (1+0.5 sin 0)	-
	=1.392(10-1%)(2)(5) 1 O=010	
	= 130.5 k > 36 :.0 k	-
	246 K Base Metal Rupture = ORn = O016 Future lweld twelds	
	246 Base reter popular that the case was	
	\$ 0.6 Fu to lweld # welds	
	ORn = 0.75(0.6)(65)(0.45)(9.375)(2) =/246.8	
	ORn = 0.75(0.L)(65)(0.45)(9.375)(2) = 246.8	
	plate => 0.75(0.6)(58)(0.75)(9.375)(2) = 367.63	-
		-

Appendix K: Acoustical Calculations

for Centrifugal Chillers (130 to 1300 Tons)

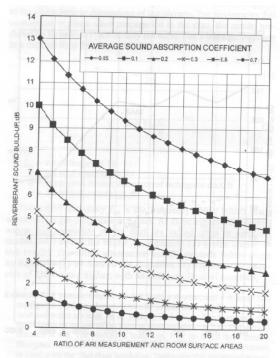


Fig. 14 Estimated dB Buildup in Mechanical Room for ARI 575 Chiller Sound Levels

Chillers and Air-Cooled Condensers

All chillers and their associated systems produce significant amounts of both broadband and tonal noise. The broadband noise is caused by flows of both refrigerant and water, whereas the tonal noise is caused by the rotation of compressors, motors, and fans (in fan-cooled equipment). Chiller noise is usually significant in the octave bands from 250 through 1000 Hz.

ALL are taken from ASHRAE 2003 Applications Handbook 47.10 & 47.11

Indoor Water-Cooled Chillers. The dominant noise source in most water-cooled chillers is the compressor. Water-cooled chillers can use any compressor type, but most use either centrifugal or screw compressors.

Factory sound data for indoor chillers are obtained via ARI Standard 575. The standard requires measuring the A-weighted and octave band sound pressure level (L_p) values at several locations 3.28 ft from the chiller and 4.92 ft above the floor. ARI 575 ratings are generally available at operating points of 25, 50, and 100% of a chiller's nominal full capacity. The ranges of ARI 575 values for typical centrifugal and screw chillers are shown in Figures 12 and 13, respectively.

ARI 575 measurements are usually made in very large rooms with large amounts of sound absorption. Measured levels must be adjusted for each chiller installation to account for the size and surface treatment conditions of the mechanical room. For a given chiller at a given operating point, a small equipment room, or one

							1aich 13					
	For	r Figure	14 in	ASAKAE	2003	Application	us Handle	ook /	1.11			
	For Only OHE Chiller											
		Add 3.20	3' to h	eight		on each	side					
0												
MPA	h = 3.28' + 7' - 0'' = 10.28' $l = (2)6.56' + 7' - 0'' = 20.12'$											
9		$\omega = 0.56' + 4'0'' = 17.12'$										
		1	0.28'(2	0.12")(17	7.12') =	3541 ft3						
			room s	size								
	30.5'(45')(14.17') = 19444 \$43											
	19444 ≅ 5.5 3541											
			10	7444 =	5.5							
						1 (1)	build a	15 9				
			Figur	14 th	e estima		buildup					
			Figur	14 th	e estima		buildup					
		: 9	Figur	14 th	e estima							
	(He)	i 9 fic	Figure is adde	14 th	e estima	cteve ba			80008			
		: 9 fie 63	Figure is adde	14 th 11 3 250 92	e estima	1000	2000	4000	8000			
Bi	(He) 1	; 9 fic 63 80 +9	Figure is adder	14 th	e estima	1000	nd centr	4000	67			
	1d up	; 9 fic 63 80 +9	Figure is adder	14 th 1 to 11 250 92 + 9	soo 88 + 9	1000 90 19	2000 87 +9	4000 79 tq 88	67 f 9			
Aweig	ld up	; 9 fic 63 80 +9	Figure is adder	14 th 12 to 12 to 12 to 12 to 19	e estima 8 0 500 88 + 9	1000 90 +9	2000 87 +9	4000 79 tq				
	ld up	; 9 fic 63 80 +9	Figure is adder	14 th 1 to 11 250 92 + 9	soo 88 + 9	1000 90 19	2000 87 +9	4000 79 tq 88	67 f 9			

Criteria for Acceptable HVAC Sound Levels in Rooms

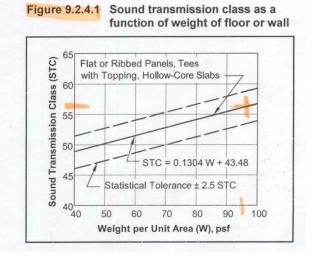
Sound associated with HVAC systems is usually considered part of the background sound in a building. Therefore, to be judged acceptable, it must neither noticeably mask sounds people want to hear nor be otherwise intrusive or approximation observator. In or office

47.29

	RC(N)
Room Types	$(QAI \le 5 dB^{a,b})$
Residences, Apartments, Condominiums	25 to 35
Hotels/Motels	
Individual rooms or suites	25 to 35
Meeting/banquet rooms	25 to 35
Corridors, lobbies	35 to 45
Service/support areas	35 to 45
Office Buildings	
Executive and private offices	25 to 35
Conference rooms	25 to 35
Teleconference rooms	25 (max)
Open-plan offices	30 to 40
Corridors and lobbies	40 to 45
Hospitals and Clinics	
Private rooms	25 to 35
Wards	30 to 40
Operating rooms	25 to 35
Corridors and public areas	30 to 40
Performing Arts Spaces	
Drama theaters	25
Concert and recital halls ^c	
Music teaching studios (.oto .noits)	25
Music practice rooms	30 to 35
Laboratories (with fume hoods)	
Testing/research, minimal	
Speech communication	45 to 55
Research, extensive telephone use, speech communication	40 to 50
Group teaching	35 to 45
Church, Mosque, Synagogue	
General assembly with critical music	
programs ^c	25 to 35
Schools ^d	
Classrooms	25 to 30
Large lecture rooms	25 to 30
(without speech amplification)	25
Libraries * (bahoder)	30 to 40
Courtrooms	tiess these six priin
Unamplified speech	25 to 35
Amplified speech	30 to 40
Indoor Stadiums, Gymnasiums	n, sound from ner
Gymnasiums and natatoriums ^e	40 to 50
Large seating-capacity spaces with speech	
amplificatione	45 to 55

9.2 ACOUSTICAL PROPERTIES OF PRECAST CONCRETE

9.2.1 Definitions


Hertz (Hz). A measure of sound wave frequency, i.e., the number of complete vibration cycles per second.

STC. Sound Transmission Class **IIC.** Impact Insulation Class

9.2.2 General

The basic purpose of architectural acoustics is to provide a satisfactory environment in which desired sounds are clearly heard by the intended listeners and unwanted sounds (noise) are isolated or absorbed.

Under most conditions, the architect/engineer can determine the acoustical needs of the space and then design the building to satisfy those needs.

Table 1. Suggested acoustical crite	eria for some occur			
Jable 1. Suggested acoustical crite				
	Recomn Minimum Attenu	nended n Sound	Recommended Range for Background	Reverberation Time, second
	ASTC	FIIC	Noise, dB(A)	
Multi-family homes	55	50	35-40	
Bedrooms in residences	55	50	30-35	
Private offices	45		40-45	
Meeting rooms	50		35-40	0.5
Bedrooms in hotels, motels and hospitals	50	50	35-40	
Classrooms up to 300 m ³	50		35-40	0.6
Cafeterias			40-45	0.8
Large lecture rooms, classrooms over 300 m ³	50		30-35	0.7
Gymnasiums			40-45	1.0
Libraries			40-45	0.7

Taken from the Precast Concrete Institute (PCI) PCI Design Handbook / Sixth Edition

		illers in the same room
	the sound level for bo	th is assumed the same
	and there fore the db	A for the room equals
	102 + 102	
AD	Lp = [105 d6A] =	-1
CAMP	Lz = Sound level in C	an france Comm
	Li = Sound level in (
	TL = STC = STC = S	7 dBA
	STC, = 5	
	in Conference	riteria for HVAC Systems
	= 30 dBA	1,084
	$L_2 = BNC = L_1 - STC \leq L_2$	
	As designed	Proposed
	30 > 105-51 = 54	30 > 105-57 = 48
	NOT ACCEPTABLE	NOT ACCEPTABLE
	By many the language	a record shows a seed a
	Carrier Service Control	

	Acousit	ical	au,	iller Room	tive cielin	g March	13, 20	310
	e	stimated	absorpti	ve coeff	Picirut d	or Figur	e 14 = 1	0.2
HZ	63	125	250	500	1000	2000	4000	8000
	80	75	92	88	90	37	79	67
Bild up	+ 6	+4	+6	+(+6	+(,	+6	+6
	80	81	98	94	96	93	85	73
A weighti	ng - 25	-15	8-	-3	0	+1	+1	-1
A wighted		CC	90	91	96	94	80	72
Total (SBA)	61	67	90	94	98	99	99	99
		ning the	STC ,			on provide	e and ad	lditional
		303 102				2 102-6	57+10)	
		30× 41						
			CEPTABLE			4 35 thin the	25-35 (ange
	C	offection	found i	n ASHRA	+L 1003	Application	ns Itandl	nd

	troustical			=>	Medical	Shell C	an freen	Room				
F	Recicure soom volume => Medical Shaff Confesence Room 36.5'(22')(9') = 6039 ft3 = 6000ft3 <15000 ft3											
						= 6000 f	+ <15	000 ff				
			Table 28					- 1				
					0			ive ceiling				
-	ß	5 = 9	for a dis	tance at	8'au	my for	Table 2	9				
SAMPAD	Lp = Ln	+ A-	B equa	tion 19								
9				Lw								
(H =	(3	125	250	500	1000	2000	4000	8000				
Max dB	80	75	92	88	90	87	79	67				
Build of		+ 4	+ C	+6	+ 6	+ 4	+ (+4				
	86	81	98	94	96	93	85	73				
(+ A)	+1	+0	-1	- 2	-3	-4	- 5	-5				
(- B)	-9	- 9	-9	-9	-9	-9	-9	-9				
	78	72	88	83	84	80	٦١	59				
A weightim	3 -25	-15	-8	- 3	G	+ 1	+ 1	- 1				
A weighted Adjusted	53	57	80	80	84	81	72	58				
Total (dBA)	53	\$8	80	83	87	88	88	88				
4		20	Lillers	= 1918	BA							
	As De	signed			PROPS							
	302	91- (51+	10) = 3a			91- (57						
	30=	30:0	K		3	0)24 :	ok					

Point Sound Sources

Most normally furnished rooms of regular proportions have acoustic characteristics that range from average to medium dead. These usually include carpeted rooms with sound-absorptive ceilings. If such a room has a volume less than 15,000 ft³ and the sound source is a single point source, sound pressure levels associated with the sound source can be obtained from

where $L_p = s$ $L_w = s$	ound pre	ssure lev	evel at	specific	ed dista	ance fro	om sou	nd soui	ce, dB			
Table 25 TL _{in} Versus Frequency for Rectangular Ducts												
7L _{out} , dB Octave Midband Frequency, Hz												
Duct Size, in. × in.	Gage	63	125	250	500	1000	2000	4000	8000			
12 × 12	24	16	16	16	25	30	22	38	42			
12 × 24	24	15	15	17	25	28	32	38	42			
12 × 48	22	14	14	22	25	28	34	40	42			
24 × 24	22	13	13	21	26	29	34	40	42			
24 × 48	20	12	15	23	26	28	36	42	42			
48 × 48	18	10	19	24	27	32	38	42	42			
48 × 96	18	11	19	22	26	32	38	42	42			

Note: Data are for duct lengths of 20 ft, but values may be used for cross-section shown regardless of length.

Table 26 Experimentally Measured TL_{in} Versus Frequency for Circular Ducts

218/4/40	adqmao	lathda	galong	Octav		TL _{in} , o	iB Freque	ncy, H	z.		
Diameter, in.	ft ft		ft	Gage	63	125	250	500	1000	2000	4000
Long Sean	n Ducts	nshide e	ainm i								
8	15	26	>17	(31)	39	42	41	32	31		
14	15	24	>27	43	43	31	31	28	22		
22	15	22	>28	40	30	30	30	24	22		
32	15	22	(35)	36	23	23	21	19	35		
Spiral Wo	und Duct	S	ddani	l as							
8	10	26	>20	>42	>59	>62	53	43	26		
14	10	26	>20	>36	44	28	31	32	22		
26	10	24	>27	38	20	23	22	19	33		
26	10	16	>30	>41	30	29	29	25	38		
32	10	22	>27	32	25	22	23	21	37		

Note: In cases where background sound swamped the sound radiated from duct walls, a lower limit on TL_{in} is indicated by >. Parentheses indicate measurements in which background sound produced greater uncertainty than usual.

Table 27 TLin Versus Frequency for Flat Oval Ducts

Dust Size	ntellijes	TL _{in} , dB Octave Midband Frequency, Hz								
Duct Size, in. × in.	Gage	63	125	250	500	1000	2000	4000		
12 × 6	24	18	18	22	31	40	11/2/2	1) 100		
24 × 6	24	17	17	18	30	33	O HIN	11 1000		
24 × 12	24	15	16	25	34	100	NEC SI	1 120		
48 × 12	22	14	14	26	29	_	I FILL ACTO			
48 × 24	22	12	21	30	111		ONE CONTRACT	1100		
96 × 24	20	11	22	25			Salary)	r Harri		
96 × 48	18	19	28			Habba	(th <u>adi</u>	R III		

Note: Data are for duct lengths of 20 ft, but values may be used for cross-section shown regardless of length.

furnished room has a volume greater than 15,000 ft³ and the sound source is a single point source, sound pressure levels associated with the sound source can be obtained from

$$L_p = L_w - C - 5 \tag{20}$$

Values for C are given in Table 30. Equation (20) can be used for room volumes of up to 150,000 ft³, with accuracy typically within 2 to 5 dB.

Distributed Array of Ceiling Sound Sources

In many office buildings, air supply outlets are located flush with the ceiling of the conditioned space and constitute an array of distributed ceiling sound sources. The geometric pattern depends on the floor area served by each outlet, the ceiling height, and the thermal load distribution. In the interior zones of a building where thermal load requirements are essentially uniform, air delivery per outlet is usually the same throughout the space; thus, these outlets emit nominally equal sound power levels. One way to calculate sound pressure levels in a room with a distributed array is to use Equation (19) or (20) to calculate the sound pressure levels for each individual air outlet at specified locations in the room and then log-

Table 28 Values for A in Equation (19)

		Octave	Value Midba	for A	, dB equency	, Hz	
toom Volume, _ ft ³	63	200	250	500	1000	2000	4000
1,500	4	3	2	1	0	-1	-2
2,500	3	2	1	0	-1	-2	-3
4,000	2	1	0	-1	-2	-5	-4
6,000	1	0	-1	-2	-3	-4	-5
10,000	0	-1	-2	-3	-4	-5	-6
15,000	-1	-2	-3	-4	-5	6	-7
Tabl	le 29 V	alues f	or <i>B</i> in	ı Equ	ation (19)	
Distance 1	from Sou	nd Sour	ce, ft			or B, dB	
	3					5	
	4					6 7	
	5					8	
	6					9	
	8 10					0	
	13					1	
	16					2	
	20				1	3	
Tab	le 30 \		Va	lue for	uation (
Distance from		Octa	ave Mic	dband	Freque	ncy, Hz	
						10070711111111	201121111111
Sound Source,		125	250	50		3000 CONTRACTOR STREET	4000
Sound Source,		125 5	1111000011111) 1000	3000 CONTRACTOR STREET	400 0
Sound Source, 3 4	ft 63		250	50	0 100 6	2000	
3	ft 63	5 7	250 6	50	0 1006 6 8	7 9	10
3 4 5	ft 63 5 6	5 7	250 6 7	50 9	0 1000 6 8 9	7 9 11	10 12
3 4 5 6	ft 63 5 6	5 7 8	250 6 7 8	500 6 7	0 1000 6 6 8 9 0 10	7 9 11 12	10 12 14
3 4 5 6 8	ft 63 5 6 7 8	5 7 8 9	250 6 7 8 9	500 6 7 8	0 1000 6 6 8 9 9 10 12	7 9 11 12 14	10 12 14 16
3 4 5 6 8	ft 63 5 6 7 8 9	5 7 8 9 10	250 6 7 8 9 10	500 6 7 8 9	0 1000 6 8 8 9 0 10 1 12 2 13	7 9 11 12 14 16	10 12 14 16 18
3 4 5 6 8 10	ft 63 5 6 7 8 9	5 7 8 9 10 11	250 6 7 8 9 10 12	500 6 7 8 9 11	0 1000 6 8 8 9 0 10 1 12 2 13 3 15	7 9 11 12 14 16 18	10 12 14 16 18 20
3 4 5 6 8 10 13	ft 63 5 6 7 8 9 10	5 7 8 9 10 11 12	250 6 7 8 9 10 12	500 6 7 8 9 11 12	0 1000 6 6 8 8 9 10 1 12 2 13 8 15 5 16	7 9 11 12 14 16 18 19	10 12 14 16 18 20 22
3 4 5 6 8 10	63 5 6 7 8 9 10 11 12	5 7 8 9 10 11 12 13	250 6 7 8 9 10 12 13	500 6 7 8 9 11 12 13	0 1000 6 6 8 9 10 10 12 12 13 15 16 16 17	7 9 11 12 14 16 18 19 20	10 12 14 16 18 20 22 24

Chiller Room Final Calculations with Acoustical Treatment

	Acres	tical	Final C		PEATME	on Loss	Maic	L 18, 2	310
		NG TI	HE AR	7 USA /2 16/ Ft	ART COM	posite so			
	(H€)	63	125	250	500	1000	2000	4000	8000
	Max dBA buildup	80	75	92	46	90 +6	87 +6	79	67 +C
GAMPAD	+ A - B	84	81 + 0 - 9	98 - 1	94 -2 -9	96 - 3 - 9	93 -4 -9	85 -5 -9	73 -5
	Art composite	78	72	88	83	84 -21	80 - 26	71 -32	59
	A . weighting	-25	62	7 le - 8	-3	63	58	39 +1	-1
	A weighted Adjusted		47	82	64	63	59	40	
	TOTAL dB A		47	68	69	70	70	70	[70]
			2	dillers	≈ 73.	ARA			
			s Desi				lopased		
		2		8-51= . GK	22	2	· 73 - S		

Boiler Room With No Acoustical Treatments

	/1 2005	11(4) /	inal Cale	1. 11	Treatmen		7 -110	18,20	
			70 7-	roustical	11(2)				
	(H2)	63	125	250	500	1000	2000	9800	800
12	dBA	50	62	62	69	69	61	54	46
	+ Build up	+ 7	+7	+7	t7	+7	+7	+7	+7
		57	69	69	76	70	68	61	5
DAD	40	+ (0	- 1	- 2	-3	-4	- 5	- 5
CAMPAD	+A -B	-9	-9	-9	-9	-9	-9	-9	-0
		49	60	59	65	64	55	47	39
	A weighting	-25	-15	-8	- 3	0	+1	+1	- 1
	A wrighted Adjusted	24	45	51	62	64	56	48	38
1	TOTAL	24	45	52	62	66	66	66	160
		A	design		€ 69.		osrd		
					40.0				Λ
		25	7 69-	51 = 188	IBA	25%		= 12 dB	h-4
			: 0	3K		; ok			

Appendix L: Vibration due to Walking

9.7.2 Human Response to Building Vibrations

This section is a condensation of the material contained in Ref. 1, which is based on information in Refs. 2 to 6.

Limits are stated as a minimum natural frequency of a structural system. These, in turn, depend on the permissible peak accelerations (as a fraction of gravitational acceleration), on the mass engaged during an activity, the degree of continuity of the floor system, the environment in which the vibration occurs, the effectiveness of interaction between connected structural components, and the degree of damping. Much vibration theory derives from experience with steel and wood floors. In general, floor vibrations are much less likely to be a problem with stiffer, more massive, concrete floors.

Some building types common in precast construction are not dealt here, because of a lack of source information. Choice of limits for usage not listed may be selected, with judgment, from other types listed here.

It must be emphasized that the calculations presented are very approximate. The actual natural frequency of a floor can be estimated to a reasonable degree of accuracy, but the calculation of the required frequency is based on damping and on human response, both of which are subject to much variation. When in doubt about the acceptability of a proposed floor system, the best way to decide is to compare it to existing similar systems that are known to be acceptable or unacceptable, using the same method of analysis.

9.7.3 Types of Vibration Analysis

Three types of vibration analysis are described. These analyses differ because the inputs causing the vibration differ.

9.7.3.1 Walking

As a walking person's foot touches the floor, a vibration of the floor system is caused. This vibration may be annoying to other persons sitting or lying in the same area, such as an office, a church, or a residence. Although more than one person may be walking in the same area at the same time, their footsteps are normally not synchronized. Therefore, the analysis is based on the effect of the impact of the steps of individual walking persons.

9.7.3.2 Rhythmic Activities

In some cases, several or many people may engage in a coordinated activity that is at least par-

tially synchronized. Spectators at sporting events, rock concerts, and other entertainment events often move in unison in response to music, a cheer, or other stimuli. The people engaged in the rhythmic activity have a higher level of tolerance for the induced vibrations, while those nearby will have a lower level of tolerance.

9.7.3.3 Mechanical Equipment

Mechanical equipment may produce a constant impulse at a fixed frequency, causing the structure to vibrate.

9.7.3.4 Analysis Methods

Each of the three input types described above requires a somewhat different solution. But, all require knowledge of an important response parameter of the floor system, its natural frequency of vibration.

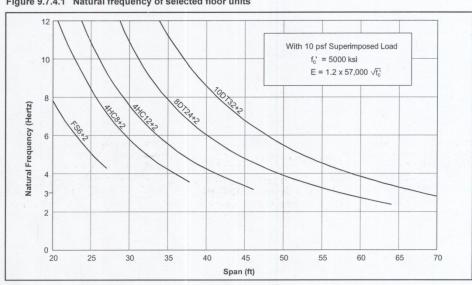
9.7.3.5 Using Consistent Units

All the equations in this section are dimensionally correct. Provided one is careful to be sure that the units used cancel out to produce the desired units for the answer, a correct result will be obtained using either customary or SI units.

9.7.4 Natural Frequency of Vibration

The natural frequency of a floor system is important in determining how human occupants will perceive vibrations. It has been found that certain frequencies seem to set up resonance with internal organs of the human body, making these frequencies more annoying to people.

The human body is most sensitive to frequencies in the range of 4 to 8 Hertz (cycles per sec). This range of natural frequencies is commonly found for typical floor systems.


9.7.4.1 Computing the Natural Frequency

The natural frequency of a vibrating beam is determined by the ratio of its mass (or weight) to its stiffness. The deflection of a simple span beam is also dependent on its weight and stiffness. A simple relationship exists between deflection and natural frequency of a uniformly loaded simple span beam on rigid supports: [2,3]

$$f_{n} = 0.18 \sqrt{\frac{g}{\Delta_{j}}}$$
 (Eq. 9.7.4.1)

PCI Design Handbook/Sixth Edition First Printing/CD-ROM Edition 9-67

9.7.4.2 Computing Deflection

The deflection, Δ_j , for a uniformly loaded simple span floor unit is:

$$\Delta_{\rm j} = \frac{5 {\rm w} \ell^4}{384 {\rm EI}}$$
 (Eq. 9.7.4.2)

Many vibration problems are more critical when the mass (or weight) is low. When computing Δ_i , use a minimum realistic live load when computing w, not the maximum live load.

For continuous spans of equal length, the natural frequency is the same as for simple spans. During vibration, one span deflects down while the adjacent spans deflect upward. An inflection point exists at the supports, and the deflection and natural frequency are the same as for a simple span.

For unequal continuous spans, and for partial continuity with supports, the natural frequency may be increased by a small amount. Refs. 2 and 3 suggest how this increase may be computed.

9.7.4.3 Effect of Supporting Girders

The deflection of beams or girders supporting the floor system also affect the natural frequency of the floor system. The simple-span deflection, Δ_g , of the floor girder may be calculated in the same manner as Δ_l . The natural frequency of the floor

system may then be estimated by the following formula: [2,3]

$$f_n = 0.18 \sqrt{\frac{g}{\Delta_i + \Delta_g}}$$
 (Eq. 9.7.4.3)

For concrete floor systems supported on walls, Δ_g may be assumed to be zero. For concrete floor systems supported by concrete girders, Δ_g is normally small, and is often neglected, unless the girders are unusually long or flexible. For concrete floor units supported on steel beams, the beam deflection can have a significant effect, and should usually be included in computing $f_{\rm fl}$.

9.7.4.4 Minimum Natural Frequency

Floors with natural frequencies lower than 3 Hertz are not recommended, because people may more readily synchronize their actions at lower frequencies. [3]

9.7.4.5 Graphs of Natural Frequency

Eqs. 9.7.4.1 and 9.7.4.2 may be combined to produce the following Eq. 9.7.4.4, for a floor unit on stiff supports:

$$f_n = \left(\frac{1.58}{\ell^2}\right) \sqrt{\frac{\text{Elg}}{\text{w}}}$$
 (Eq. 9.7.4.4)

9-68

PCI Design Handbook/Sixth Edition First Printing/CD-ROM Edition

Figure 9.7.4.1 shows the relation between span and expected natural frequency for various topped floor units given in Chapter 2.

9.7.5 Damping

Damping usually is expressed is a fraction or percent of critical damping. Real building structures have damping from 1 percent to a few percent of critical.

Types of Damping

Damping is not a well understood phenomenon. In the literature, differing methods are used for calculation. This section and its references are based on modal damping. Do not mix values of damping from other sources with damping values in the equations of this section, as they may be based on a different calculation method.

Estimation of Damping

Damping of a floor system is highly dependent on the non-structural items (partitions, ceilings, furniture, etc.) present. The modal damping ratio of a bare structure can be very low, on the order of 0.01. Non-structural elements may increase this, up to

The results of a vibration analysis are highly influenced by the choice of the assumed damping, which can vary widely. Yet, this choice is based more on judgment than science.

Vibrations Caused by Walking 9.7.6

Vibrations caused by walking are seldom a problem in concrete floor systems because of their mass and stiffness. When using concrete floor systems of ordinary proportions, it is usually not necessary to check for vibrations caused by walking.

When designing concrete floor systems of long-span or slender proportions, this section may be used to evaluate their serviceability with respect to vibrations.

9.7.6.1 **Minimum Natural Frequency**

An empirical formula, based on resonant effects of walking, has been developed to determine the minimum natural frequency of a floor system needed to prevent disturbing vibrations caused by walking:

$$f_n \ge 2.86 \left[\ln \left(\frac{K}{\beta W} \right) \right]$$

(Eq. 9.7.6.1)

The constant 2.86 has the units 1/sec.

Effective Weight

The effect of an impact such as a footfall is strongly influenced by the mass (or weight) of the structure affected by the impact. This weight, W, is normally taken as the unfactored dead load (per square foot) of the floor units plus some (not full code) live load, multiplied by the span and by a width B. For solid or hollow-core slabs, which are stiff in torsion, it is recommended to take B equal to the span. [2] For double tees, it is recommended to take B varying from 0.8ℓ for 18-in. double tees with 3-in. topping to 0.6 for 32-in. double tees with 3-in. topping. [5] For continuous spans, W may be increased 50 percent. [2,3] At an unstiffened edge of a floor, the width B used for estimating floor system weight should be halved. [2]

Recommended Values 9.7.6.3

The recommended values of K and β for use in Eq. 9.7.6.1 are given in Table 9.7.6.1 below.

Table 9.7.6.1 Values of K and β for use in Eq. 9.7.6.1 (based on Table 3 of Ref. 4)

		K	β
Occupancies Affected by the Vibrators	Kips	kN	
Offices, Residences, Churches	13	58	0.02 ^a 0.03 ^b 0.05 ^c
Shopping Malls	4.5	20	0.02
Outdoor Footbridges	1.8	8	0.01

a. For floors with few non-structural components and furnishings, open work area, and churches.

b. For floors with non-structural components and furnishings, cubicles.

c. For floors with full-height partitions.

First Printing/CD-ROM Edition

9-69

	PCI 9.7 Analysis From Walking March 21, 2016
	USING PCI CHAPTER 9.7 for Analysis
	Fundamental Equation: In = 0.18 7 Aslab + Agirder 9.7.4.3
	g = 386 in / sec ²
AD.	A slab = $\frac{5 \omega_s l_s^4}{384 E_c I_s}$ $\Rightarrow \omega_s = 93 plf + 30 plf = 120 plf$ $I_s = 5102 in^4$
AMA	
3)	I= 30' 1,35 for Dynamic
	$= \frac{5(0.120)(30^4)(1718)}{384(5960)(5102)} = 0.0732in$
	Agirder = 5 wg lg = 120psf(301) + 221pll = 3.821plf
	384 Eg Ig /g = 28'
	E < = 29000 ksi
	Eg= E composite girder Ig => Ic + Is her composite shape
	Ig = I composite girder $I_S = \left\{ \frac{bh}{12} \right\} (Ad^2)$
	Is = (6"(33) + 18(4.3")2)+ (6.81(8.463) + 6.85(6.918)2)
	+ /13(1.463) flange + 18.98(11.952) +4(0.5(73) + 3.5(7.662))
	HSS TOPS) ASS betlans
	$+2\left(\frac{6.5(4^{2})}{12} + 2(4.41^{2})\right) + 2\left(\frac{6.5(4^{3})}{12} + 2(11.035^{2})\right)$
	= 346,32 + 368,7 + 2713,76 + 878.63+ 83.12 + 492.42
	= 4883; 4

	PCI 9.7 Analysis From Walking March 21, 2010	(
	$I_c = 2\left(\frac{8.5(5.84^3)}{12} + 49.64(\frac{5.84}{2})\right) = 572 \text{ in}^4$	-
	Ec = (13457) \$ 4000 = 4866 Ks:	
	dynamic loading	
	1 = 5wal4 = 5(3.821) 284 (1728)	-
CAMPAD	Agider = 5wg 14 = 5(3.821) 284 (1728) 384(EsIstEcIc) = 384 (29000 (4883) + 4866(572))	
Carlo	$= 2.029 \times 10^{10} = 0.366 \text{ in}$ $= 3.84(143669660)$	
	386	
	fn = 0.18 \ \frac{8}{\Delta_{shb} + \Delta_{girder}} = 0.18 \ \frac{386}{6.0971 + 0.366}	
	= 5.20 H =	The second second
	minimum fn	1
	$f_{n_{min}} \ge 2.86 \left[J_{n} \left(\frac{K}{BW} \right) \right] \Rightarrow \text{estimated } K = 2.5 \text{ kips}$	
	$W = \omega_s(B) A \Rightarrow B = A$	1
	= 0.12 (30')(30') 1 = 30'	1
	= 108 k	
	$= 2.8 \left[ln \left(\frac{25}{0.05(108)} \right) \right] = 4.29 Hz$	
	fn > fnmin	
	5.20 > 4.29 : OK	1

	ADAPT ANALYSIS March 23, 2010
	fn as a function of % g
	a = Po e (0.35 fm) = 0 = Po e (-6.35 fm) a < 0.25/68
	a = Po e (-0.35 fn) = a = Po e (-0.35 fn) g < 0.25 kg BW From A7CA
	Figure 4
AD	Po = 150 assumed weight (0.53) From Figure 1 ADAPT TN290 with walking spred of 2Hz fn = 5.2Hz = from calculation on previous page
CAMPAL	fn = 5.2 HZ > from calculation on previous page
9	B = 0.05 => ADAPT Technical note TN290 3/21/09 Table
	g = gravitational constant
	W = wright of floor section
	= 30' × 28' (GBpsf) + 15 psf topping + 35 psf) = 107.52 k
	3.05 (107.52)(1000)
	0.2396% g < 0.25% g '. OK

ADAPT

Technical Note

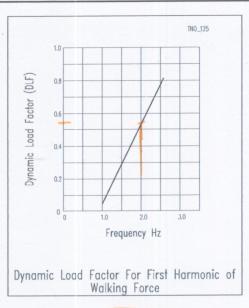


FIGURE 1

Damping

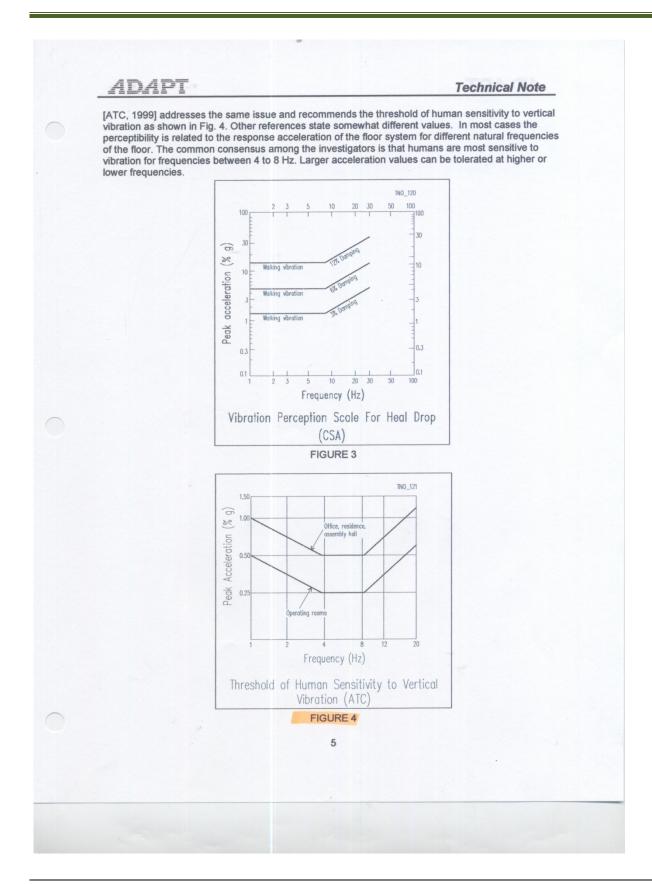

Damping has an inherently high variability that is difficult to determine before a floor system is placed in service. The recommended values from reference [Allen, D.E., and Murray, T. M., 1993] vary from 2-3% for bare concrete floors to 5-8% with full height partitions. Damping factors suggested in the same reference are listed in Table 1.

TABLE 1 RECOMMENDED DAMPING FACTORS FOR VARIOUS OCCUPANCIES

Occupancy	Damping factor β
Bare concrete floor	0.02
Furnished, low partition	0.03
Furnished, full height partition	0.05
Shopping malls	0.02

Extent of Cracking

Cracking reduces floor stiffness and, consequently, lowers its natural frequency. For conventionally reinforced concrete it is important to allow for cracking. Otherwise, the results are likely to be on the unconservative side. For conventionally reinforced flat slab construction with span to depth ratio of 30 or larger, a 30% reduction in stiffness is reasonable For post-tensioned floors designed according to IBC [IBC, 2006], allowable tensile stresses are low so reduction in stiffness is not necessary. Designs

ADAPT

Technical Note

PEAK ACCELERATION AND ACCEPTABILITY OF VIBRATION

To evaluate the vibration of a floor system, designers must determine the floor's peak acceleration response from foot drop, since the acceleration response is one of the two prime parameters in perception of vibration. Peak acceleration is obtained from the first natural frequency of a floor. [ATC, 1999; AISC/CISC 1997] recommends the following relationship:

(7)

where

ap = peak acceleration;

g = gravitational acceleration [32.2 ft/sec²; 9.81 m/sec²];

Po = constant force representing the walking force;

β = modal damping ratio, recommended in Table 1;

W = effective weight of the panel and the superimposed dead load; and

f_n = first natural frequency.

The calculated response acceleration is compared with the minimum acceptable value given by equation 8 [walking [Allen, D.E., and Murray, T.M., 1993]] and the levels per perceptibility (Fig. 4).

Quoting from [Mast, 2001] people are most sensitive to vibration when engaged in sedentary activity while seated or lying. Much more is tolerated by people who are standing, walking, or active in other ways. The following empirical formula, based on resonant effects of walking, has been developed to determine the minimum natural frequency of a floor system needed to prevent disturbing vibration caused by walking [Allen, D.E., and Murray, T.M., 1993]

$$f_n \ge 2.86 \ln \left(\frac{K}{\beta W} \right)$$

(8)

where

K = a constant, given in [Table 3];

β = modal damping ratio [Table 2];;

W = weight of area of floor panel affected by the point load (heel drop); and

 f_n = minimum frequency.

For the first natural frequency and the peak acceleration calculated the acceptability of the floor for vibration perception is compared to and matched against the suggested values of Fig. 4.